Collaborative Research: Personalized Benchmarks for High Performance Computing Applications

协作研究:高性能计算应用程序的个性化基准

基本信息

项目摘要

As high-performance computing applications target ever-larger problems, data input and output (I/O) takes up more and more run time. Users, software developers, and platform administrators often find it difficult to understand what an application's I/O code is doing, why it is slow, how it might be improved, or how well it would perform on a different platform. I/O benchmarks help address this problem, but they are expensive to produce and thus are not available for most applications. This project is providing user-friendly personalized I/O benchmarks for all applications, by leveraging existing lightweight I/O profilers that already monitor the behavior of applications on high-performance computing platforms. The resulting personalized benchmarks will help researchers, developers, and purchasers in evaluating potential new storage system architectures, evaluating existing or new versions of storage systems and I/O libraries, planning for purchases, comparing performance of application clusters or workloads across platforms, and improving the performance of parallel I/O libraries and applications. The analytics and benchmark generation software, and example benchmarks, will be publicly released. This project uses two methods to construct personalized I/O benchmarks. First, the project is making existing applications self-benchmarking across all of their runs, by providing analytics and visualization facilities to convey to stakeholders the information already automatically captured by lightweight I/O profilers such as Darshan during each run. Second, the project is creating platform-customized benchmark suites that represent the mix of application-level workloads observed on a given platform. To accomplish this, the project is clustering observed production jobs based on their I/O behavior and using both new and existing I/O kernel generation techniques to generate a compact benchmark for each cluster. The resulting benchmark suite will advance the state of the art by serving as a proxy for real-world, platform-specific production I/O workloads, and by providing previously unavailable insight into how prevalent those workloads are at a given facility.
随着高性能计算应用程序针对越来越大的问题,数据输入和输出(I/O)占用越来越多的运行时间。用户、软件开发人员和平台管理员经常发现很难理解应用程序的I/O代码在做什么,为什么它很慢,如何改进它,或者它在不同的平台上的性能如何。I/O基准测试有助于解决这个问题,但它们的生产成本很高,因此不适用于大多数应用程序。该项目通过利用现有的轻量级I/O分析器为所有应用程序提供用户友好的个性化I/O基准测试,这些分析器已经在高性能计算平台上监视应用程序的行为。由此产生的个性化基准将帮助研究人员、开发人员和购买者评估潜在的新存储系统架构、评估现有或新版本的存储系统和I/O库、规划购买、比较跨平台的应用程序集群或工作负载的性能,并提高并行I/O库和应用程序的性能。分析和基准生成软件以及示例基准将公开发布。该项目使用两种方法来构建个性化的I/O基准测试。首先,该项目通过提供分析和可视化工具,向利益相关者传达轻量级I/O分析器(如Darshan)在每次运行期间自动捕获的信息,使现有应用程序在所有运行中进行自我基准测试。其次,该项目正在创建平台定制的基准测试套件,这些套件代表在给定平台上观察到的应用程序级工作负载的混合。为了实现这一目标,该项目正在根据其I/O行为对观察到的生产作业进行聚类,并使用新的和现有的I/O内核生成技术为每个集群生成一个紧凑的基准。由此产生的基准测试套件将通过充当现实世界、特定于平台的生产I/O工作负载的代理,并通过提供以前无法获得的关于这些工作负载在给定设施中的普遍程度的洞察力,来推进最先进的技术水平。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marianne Winslett其他文献

A model-based belief revision system
  • DOI:
    10.1007/bf00881886
  • 发表时间:
    1994-06-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Timothy S. C. Chou;Marianne Winslett
  • 通讯作者:
    Marianne Winslett
Multidimensional array I/O in Panda 1.0
  • DOI:
    10.1007/bf00130709
  • 发表时间:
    1996-01-01
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Kent E. Seamons;Marianne Winslett
  • 通讯作者:
    Marianne Winslett
Introduction to the special issue on networked information discovery and retrieval
Circumscriptive semantics for updating knowledge bases
Causal Mechanism Transfer Network for Time Series Domain Adaptation in Mechanical Systems
机械系统中时间序列域适应的因果机制传递网络

Marianne Winslett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marianne Winslett', 18)}}的其他基金

EAGER: Identifying and Capitalizing on Schools of Thought as a Basis for Virtual Communities in Computer Science and Engineering Research
EAGER:识别和利用思想流派作为计算机科学和工程研究虚拟社区的基础
  • 批准号:
    2040714
  • 财政年份:
    2020
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for 2017 ACM Conference on Information and Knowledge Management (CIKM)
2017 年 ACM 信息与知识管理会议 (CIKM) 的 NSF 学生旅费补助
  • 批准号:
    1741803
  • 财政年份:
    2017
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Generalizable Similarity and Proximity Metrics for Data Exploration
III:小:协作研究:数据探索的通用相似性和邻近性度量
  • 批准号:
    1421247
  • 财政年份:
    2014
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Standard Grant
TC: Medium: Collaborative Research: Towards Formal, Risk-Aware Authorization
TC:媒介:协作研究:迈向正式的、具有风险意识的授权
  • 批准号:
    0963943
  • 财政年份:
    2010
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Automatic Extraction of Parallel I/O Benchmarks from HEC Applications
协作研究:从 HEC 应用程序中自动提取并行 I/O 基准
  • 批准号:
    0938064
  • 财政年份:
    2009
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Secure Provenance in High-End Computing Systems
协作研究:高端计算系统的安全来源
  • 批准号:
    0938071
  • 财政年份:
    2009
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Standard Grant
III-COR Medium: Collaborative Research: Achieving Compliant Databases
III-COR 媒介:协作研究:实现合规数据库
  • 批准号:
    0803280
  • 财政年份:
    2008
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Continuing Grant
CT-ISG: COLLABORATIVE RESEARCH: SecureWORM: Strong Regulatory-Compliant Storage
CT-ISG:协作研究:SecureWORM:强大的合规存储
  • 批准号:
    0716532
  • 财政年份:
    2007
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Continuing Grant
Presidential Young Investigator Awards
总统青年研究员奖
  • 批准号:
    8958582
  • 财政年份:
    1989
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Continuing Grant
Research Initiation: Relational Databases in a Hierarchical Design Environment
研究启动:分层设计环境中的关系数据库
  • 批准号:
    8809569
  • 财政年份:
    1989
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: ECCS: Small: Personalized RF Sensing: Learning Optimal Representations of Human Activities and Ethogram on the Fly
合作研究:ECCS:小型:个性化射频传感:学习人类活动的最佳表示和动态行为图
  • 批准号:
    2233503
  • 财政年份:
    2023
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Standard Grant
Collaborative Research: An Extended Reality Factory Innovation for Adaptive Problem-solving and Personalized Learning in Manufacturing Engineering
协作研究:制造工程中自适应问题解决和个性化学习的扩展现实工厂创新
  • 批准号:
    2302833
  • 财政年份:
    2023
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards Engaged, Personalized and Transferable Learning of Secure Programming by Leveraging Real-World Security Vulnerabilities
协作研究:利用现实世界的安全漏洞实现安全编程的参与式、个性化和可转移学习
  • 批准号:
    2235976
  • 财政年份:
    2023
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards Engaged, Personalized and Transferable Learning of Secure Programming by Leveraging Real-World Security Vulnerabilities
协作研究:利用现实世界的安全漏洞实现安全编程的参与式、个性化和可转移学习
  • 批准号:
    2235224
  • 财政年份:
    2023
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Standard Grant
Collaborative Research: ECCS: Small: Personalized RF Sensing: Learning Optimal Representations of Human Activities and Ethogram on the Fly
合作研究:ECCS:小型:个性化射频传感:学习人类活动的最佳表示和动态行为图
  • 批准号:
    2233536
  • 财政年份:
    2023
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Standard Grant
Collaborative Research: An Extended Reality Factory Innovation for Adaptive Problem-solving and Personalized Learning in Manufacturing Engineering
协作研究:制造工程中自适应问题解决和个性化学习的扩展现实工厂创新
  • 批准号:
    2302834
  • 财政年份:
    2023
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Standard Grant
Collaborative Research: DARE: A Personalized Assistive Robotic System that assesses Cognitive Fatigue in Persons with Paralysis
合作研究:DARE:一种评估瘫痪者认知疲劳的个性化辅助机器人系统
  • 批准号:
    2226164
  • 财政年份:
    2022
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robot-Assisted Feeding: Towards Efficient, Safe, and Personalized Caregiving Robots
NRI/合作研究:机器人辅助喂养:迈向高效、安全和个性化的护理机器人
  • 批准号:
    2132847
  • 财政年份:
    2022
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Standard Grant
Collaborative Research: A holistic human-in-the-loop framework for optimizing a personalized prosthetic arm
协作研究:用于优化个性化假肢的整体人机交互框架
  • 批准号:
    2221979
  • 财政年份:
    2022
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: FW-HTF-P: Personalized Wearable Cooling for Workers under Heat Stress
合作研究:FW-HTF-P:为热应激工人提供个性化可穿戴冷却
  • 批准号:
    2222625
  • 财政年份:
    2022
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了