RUI: Behavior-Based Stochastic Traffic Flow Modeling for Intersection Safety Improvement
RUI:基于行为的随机交通流建模,用于改善交叉口安全
基本信息
- 批准号:1536277
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research will investigate driver behavior at signalized intersections and derive sophisticated traffic flow models aimed at intersection safety improvement. Intersection safety has long been a national concern, partly due to the lack of understanding of complicated driving behaviors, especially decision-making mechanisms present when drivers face signal phase changes. This research tackles this issue by conducting a comprehensive investigation of driver decision-making at signalized intersections and, using insights from these investigations, developing a stochastic traffic flow model for such interrupted flow situations. Through the integration of the developed traffic flow model with connected vehicle technologies (specifically, V2X), the developed traffic flow model can be used to quantify the safety performance of signalized intersections, identify emerging hazardous situations, and contribute to the development of driver-assistance and intersection-accident-avoidance technologies. Furthermore, the outcomes from this research will create opportunities for students, particularly those from underrepresented groups, through educational and research opportunities in transportation engineering. It will also provide opportunities for college students, traffic engineers, and K-12 faculty and students through curriculum development, educational modules, and creation of pathways between high school and college, as well as college and graduate school.The objectives of this research include: 1) investigating complicated driving behaviors and the inner mechanisms of drivers' decision-making at signalized intersections through the analysis of vehicular trajectory data extracted from video images and 2) developing a stochastic traffic flow model to describe complicated driving behaviors and predict potential traffic conflicts at signalized intersections by considering the stochastic nature of drivers decision-making when facing signal phase changes under varying circumstances. This research will contribute to the theoretical development of traffic flow models. These traffic flow models will be able to describe complicated driving behaviors and estimate traffic conflicts at signalized intersections, both of which are absent from most other traffic flow models. Furthermore, this research is expected to contribute significantly to the improvement of intersection safety. This research will build a foundation for the future development of dynamic systems for alerting drivers of emerging hazards and helping to avoid intersection accidents.
本研究将调查信号交叉口的驾驶员行为,并推导出复杂的交通流模型,以提高交叉口的安全性。长期以来,交叉口安全一直是全国关注的问题,部分原因是缺乏对复杂驾驶行为的理解,特别是当驾驶员面对信号相位变化时所呈现的决策机制。本研究通过对信号交叉口的驾驶员决策进行全面调查来解决这一问题,并利用这些调查得出的见解,为这种中断的交通情况开发了一个随机交通流模型。通过将已开发的交通流模型与车联网技术(特别是V2X)相结合,所开发的交通流模型可用于量化信号交叉口的安全性能,识别新出现的危险情况,并有助于驾驶员辅助和交叉口事故避免技术的发展。此外,这项研究的结果将为学生创造机会,特别是那些来自代表性不足的群体,通过交通工程的教育和研究机会。它还将通过课程开发、教育模块、高中和大学、大学和研究生院之间的通道的创建,为大学生、交通工程师、K-12教师和学生提供机会。本研究的目的包括:1)通过分析视频图像中提取的车辆轨迹数据,研究信号交叉口复杂驾驶行为及其决策的内在机制;2)考虑不同情况下信号相位变化下驾驶员决策的随机性,建立随机交通流模型,描述信号交叉口复杂驾驶行为并预测潜在的交通冲突。本研究将有助于交通流模型的理论发展。这些交通流模型将能够描述复杂的驾驶行为和估计信号交叉口的交通冲突,这是大多数其他交通流模型所缺乏的。此外,本研究可望对提高交叉口的安全性有重要的贡献。这项研究将为未来动态系统的发展奠定基础,以提醒驾驶员注意新出现的危险,并帮助避免交叉事故。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinkai Wu其他文献
Development of a Real-Time Arterial Performance Monitoring System Using Traffic Data Available from Existing Signal Systems
使用现有信号系统提供的交通数据开发实时动脉性能监测系统
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Henry X. Liu;Wenteng Ma;Xinkai Wu;Heng Hu - 通讯作者:
Heng Hu
Dynamics of antimembranes in the maximally supersymmetric eleven-dimensional pp wave
最大超对称十一维 pp 波中反膜动力学
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
J. Michelson;Xinkai Wu - 通讯作者:
Xinkai Wu
Eco-driving advisory strategies for a platoon of mixed gasoline and electric vehicles in a connected vehicle system
联网车辆系统中混合汽油和电动汽车排的生态驾驶咨询策略
- DOI:
10.1016/j.trd.2018.07.014 - 发表时间:
2018-08 - 期刊:
- 影响因子:0
- 作者:
Xiaozheng He;Xinkai Wu - 通讯作者:
Xinkai Wu
Modeling Arterial Traffic Dynamics With Actuated Signal Control Using a Simplified Shockwave Model
使用简化的冲击波模型通过驱动信号控制对干线交通动力学进行建模
- DOI:
10.1109/tits.2019.2943246 - 发表时间:
2019 - 期刊:
- 影响因子:8.5
- 作者:
Xinkai Wu;Guangjun Wang;Daocheng Fu;Terence K. Tong;Zhao Zhang;Weihua Li - 通讯作者:
Weihua Li
TrajPT: A trajectory data-based pre-trained transformer model for learning multi-vehicle interactions
TrajPT:一个基于轨迹数据的预训练 Transformer 模型,用于学习多车辆交互
- DOI:
10.1016/j.trc.2025.105013 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:7.900
- 作者:
Yongwei Li;Yongzhi Jiang;Xinkai Wu - 通讯作者:
Xinkai Wu
Xinkai Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Impact of nurses' behavior change and implementing evidence-based practice to improve quality indicators in intensive care units in low-and middle-income countries
护士行为改变和实施循证实践对提高低收入和中等收入国家重症监护病房质量指标的影响
- 批准号:
24K02733 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Security Evaluation Method Against Deep-Learning-Based Side-Channel Attacks Exploiting Physical Behavior of Cryptographic Hardware
针对利用密码硬件物理行为的基于深度学习的侧信道攻击的安全评估方法
- 批准号:
23K11102 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: IHBEM: The fear of here: Integrating place-based travel behavior and detection into novel infectious disease models
合作研究:IHBEM:这里的恐惧:将基于地点的旅行行为和检测整合到新型传染病模型中
- 批准号:
2327797 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Systematization of Cognitive Behavioral Therapy based on the influence of rule-governed behavior in frequent stealing behavior
基于规则行为对频繁偷盗行为的影响的认知行为治疗的系统化
- 批准号:
23K18975 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
CT imaging-based prediction and stratification of motor and cognitive behavior after stroke for targeted game-based robot therapy: Diversity Supplement
基于 CT 成像的中风后运动和认知行为的预测和分层,用于基于游戏的有针对性的机器人治疗:多样性补充
- 批准号:
10765218 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Mechanistic Understanding of Multi-scale Sintering Behavior Influenced by Anisotropic Particle and Pore Distributions in Extrusion-based Metal Additive Manufacturing
基于挤压的金属增材制造中受各向异性颗粒和孔隙分布影响的多尺度烧结行为的机理理解
- 批准号:
2224309 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Development of plastic theory based on statistical mechanics to realize effect of dislocation behavior
发展基于统计力学的塑性理论以实现位错行为的效果
- 批准号:
23K18458 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Structural Performance of RC Frame with Precast DFRCC Walls Based on Material Mechanics Behavior Model
基于材料力学行为模型的预制DFRCC墙体RC框架结构性能
- 批准号:
23H01549 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Maintaining behavior change: A 6-year follow-up of adolescent 'night-owls' and an evaluation of a habit-based sleep health intervention
维持行为改变:对青少年“夜猫子”进行 6 年随访以及基于习惯的睡眠健康干预评估
- 批准号:
10701399 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Validating Sensor-based Approaches for Monitoring Eating Behavior and Energy Intake by Accounting for Real-World Factors that Impact Accuracy and Acceptability
通过考虑影响准确性和可接受性的现实因素来验证基于传感器的饮食行为和能量摄入监测方法
- 批准号:
10636986 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别: