Collaborative Research: Elucidating algal host-virus dynamics in different nutrient regimes - mechanistic interactions and biogeochemical impact
合作研究:阐明不同营养状况下藻类宿主病毒的动态 - 机械相互作用和生物地球化学影响
基本信息
- 批准号:1536521
- 负责人:
- 金额:$ 32.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Marine phytoplankton, photosynthetic microscopic organisms that float with the oceans currents, account for ~50% of the Earth's primary productivity. When there are sufficient nutrients and light to sustain their growth, phytoplankton thrive and produce large-scale blooms in the world oceans that can be seen from Earth-observing satellites. Coccolithophores are arguably one of the most dominant and globally distributed phytoplankton. Their dual ability to produce calcium carbonate cell walls and to use carbon dioxide for photosynthesis make them a key component of the oceanic carbon cycle and marine ecosystems. As such, water column processes that impact the fate of this cellular carbon are of critical importance. Emiliania huxleyi is a globally widespread, cosmopolitan coccolithophore that forms blooms in all but the polar oceans. These blooms are routinely terminated by virus infection (Coccolithoviruses), which results in cell death and the release of organic matter into the upper ocean. At the same time, infection triggers the production and release of a sticky mucus-like gel which serves to aggregate free floating cells (and even viruses) into larger particles that have very high sinking rates into the deep ocean. Hence, viruses play multifaceted roles in determining whether phytoplankton carbon sinks to the deep ocean and is sequestered away from the atmosphere or is recycled in the upper ocean free to exchange with the atmosphere. Ultimately, factors that impact the interactions between phytoplankton cells and viruses are likely to affect the direction of carbon flow in the oceans. This project uses a well-characterized, laboratory-based coccolithophore-virus system (E. huxleyi and Coccolithoviruses) to elucidate the basic mechanisms that underlie host-virus interactions at the levels of adsorption, replication and production. Proposed work will manipulate nutrient supply to understand its impact on mechanisms of infection and to better interpret population changes in different oceanic regimes. A key tenet is to investigate the role of mucus-like gels and calcium carbonate cell walls, both of which are produced under nutrient stress, as important first order drivers in host-virus interactions. Experimental work will be integrated into mathematical models as a tool to extrapolate our findings and postulate how, to first order, viruses control the fate of phytoplankton populations in the ocean. Research concepts and findings will be relayed to broader audiences by developing an online educational software tool and web app (via the Rutgers University Mobile App Development group) that focuses on the use of mathematical modeling in marine science. It will be designed to meet national requirements for the Next Generation Science Standards (NGSS) for 15-16 year olds. Students will learn about patterns of ocean productivity, articulate how and why ocean ecosystems are sensitive to environmental change, and understand the role of viruses in ecosystem structure. To ensure large-scale distribution of the app, with a particular aim to reach underrepresented students and to address the NGSS, Rutgers will host workshops to familiarize the teachers with the science, the scientists, and effective use of the app and associated lessons. The investigators will work with external evaluators to assess the effectiveness of these activities and deliverables. Research activities will also be communicated to the general public by interactions with the 'Liquid Living' display at the San Francisco Exploratorium and the annual 'Nautical Night' at the MIT museum in Boston, MA.Phytoplankton are the basis of marine food webs and are responsible for approximately half of global net primary production. As highly abundant infectious entities in the oceans, marine viruses can cause the demise of phytoplankton blooms and drive the release of dissolved and particulate organic matter (DOM and POM), which stimulates microbial activity, facilitates bacterial re-mineralization, enhances nutrient recycling and respiration, as well as short-circuits carbon transport to higher trophic levels. At the same time, enhanced production and release of "sticky" colloidal cellular components, such as transparent exopolymer particles (TEP), during viral lysis can cause particle aggregation and enhance carbon export. As yet, the dynamics of phytoplankton infection by viruses and the balance between these diametrically opposed ecosystem pathways has not been fully characterized under different physicochemical conditions. An enhanced mechanistic and quantitative understanding of host-virus interactions can critically inform and constrain ecosystem models and allow researchers to ascertain and quantify its ecological and biogeochemical impacts on large spatial scales. This collaborative project aims to bridge existing gaps in our mechanistic and quantitative understanding of viruses as agents of phytoplankton mortality and their impact on biogeochemical processes. The ability of ecosystem models to predict carbon flow in marine systems is limited, in part, by a lack of appropriate information regarding the nutrient sensitivity of fundamental infection parameters: viral adsorption rates onto/into hosts, virus replication efficiency and latent period, and the production of infectious viruses and their excretion into the surrounding medium. Using lab-based experiments with a coccolithophore host-virus model system, as well as extensive datasets from virus infected natural coccolithophore blooms in the North Atlantic, this project aims to elucidate the impact of nutrient limitation and host cell fitness on virus infection and to what degree the dependence of viral infection on nutrient supply impacts large scale biogeochemistry and biogeography of a globally significant phytoplankton species. Our interdisciplinary approach combines grounded molecular- and flow cytometry-based diagnostic techniques, with the development of a mathematical model of infection, to understand the primary mechanisms underlying observed host-virus dynamics. We will embed the mathematical model of infection dynamics into a global ecosystem model, so we may understand the ecological impact of phytoplankton infection by viruses, and its dependence on nutrient supply, on large spatial scales.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Talmy其他文献
David Talmy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Talmy', 18)}}的其他基金
Characterizing the effects of exogenous reactive oxygen species on marine microbial ecosystem dynamics
表征外源活性氧对海洋微生物生态系统动态的影响
- 批准号:
2023680 - 财政年份:2020
- 资助金额:
$ 32.69万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating algal host-virus dynamics in different nutrient regimes - mechanistic interactions and biogeochemical impact
合作研究:阐明不同营养状况下藻类宿主病毒的动态 - 机械相互作用和生物地球化学影响
- 批准号:
1849926 - 财政年份:2018
- 资助金额:
$ 32.69万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
- 批准号:
2313860 - 财政年份:2023
- 资助金额:
$ 32.69万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 32.69万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300891 - 财政年份:2023
- 资助金额:
$ 32.69万 - 项目类别:
Continuing Grant
Collaborative Research: MRA: Elucidating the multi-dimensionality and scaling of avian diversity-vegetation relationships
合作研究:MRA:阐明鸟类多样性与植被关系的多维性和尺度
- 批准号:
2307188 - 财政年份:2023
- 资助金额:
$ 32.69万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating the Role of Natural Aerosols in Modulating Boundary Layer Clouds and Precipitation in the Southern Ocean
合作研究:阐明天然气溶胶在调节南大洋边界层云和降水中的作用
- 批准号:
2246489 - 财政年份:2023
- 资助金额:
$ 32.69万 - 项目类别:
Continuing Grant
Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
- 批准号:
2313861 - 财政年份:2023
- 资助金额:
$ 32.69万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating the roles of biogenic exudates in the cycling and uptake of rare earth elements
合作研究:阐明生物渗出物在稀土元素循环和吸收中的作用
- 批准号:
2221913 - 财政年份:2023
- 资助金额:
$ 32.69万 - 项目类别:
Standard Grant
Collaborative Research: MRA: Elucidating the multi-dimensionality and scaling of avian diversity-vegetation relationships
合作研究:MRA:阐明鸟类多样性与植被关系的多维性和尺度
- 批准号:
2307189 - 财政年份:2023
- 资助金额:
$ 32.69万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating the Ocean Dynamics Governing Melt at Glaciers Using Lagrangian Floats
合作研究:利用拉格朗日浮标阐明控制冰川融化的海洋动力学
- 批准号:
2319494 - 财政年份:2023
- 资助金额:
$ 32.69万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating Exciton Transport in Hierarchical Organic Materials through Time-Resolved Electronic and Vibrational Spectroscopy/Microscopy
合作研究:通过时间分辨电子和振动光谱/显微镜阐明多级有机材料中的激子传输
- 批准号:
2401851 - 财政年份:2023
- 资助金额:
$ 32.69万 - 项目类别:
Standard Grant














{{item.name}}会员




