Collaborative Research: Experimental and Computational Nanomechanics of the Load Transfer Mechanisms at the Graphene Polymer Interface
合作研究:石墨烯聚合物界面载荷传递机制的实验和计算纳米力学
基本信息
- 批准号:1538162
- 负责人:
- 金额:$ 20.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Polymer nanocomposites show substantial property enhancements at much lower filler component weight as compared to conventional polymer composites. Graphene has been considered an ideal candidate for reinforcing additives in polymers due to its high stiffness and strength. However, there is a lack of fundamental understanding of strength properties of graphene-polymer interfaces. This collaborative research award supports fundamental research to provide mechanistic understanding of the stress-transfer processes across interfaces between selected polymers and graphene. These processes ultimately control the stiffness, strength, and toughness of graphene polymer nanocomposite. This research will contribute towards achieving light, strong, and tough polymer nanocomposite materials. Such advanced materials would impact the aerospace and automotive industries. The research crosses the disciplines of manufacturing, mechanics, materials science, and nanotechnology. Results from this multi-disciplinary research will be incorporated into existing undergraduate courses at both universities. The research results will also form the basis of a new lecture series for K-12 summer camp students introducing these poetntail future engineers to the topic of polymer nanocomposites as next generation aerospace materials. The strength characteristics of graphene-polymer interfaces play critical roles in the bulk mechanical response of graphene-based nanocomposites. Yet, the complex nanoscale phenomena occurring during shear deformation associated with the pull-out of graphene from the polymer matrix are not well understood. This collaborative research award supports investigations of deformation, load transfer and failure of graphene-polymer interfaces at the nanoscale. A combination of complementary experimental and computational methods is employed. The research team will perform pull-out tests on individual graphene sheets embedded within polymer matrixes using an unique in-situ nanomechanical characterization technique. The nanomechanical pull-out experiments will provide direct and quantitative measurements of the interfacial strength properties. These experiments represent a significant advancement over prior macroscopic measurements of the bulk composite properties where the graphene-polymer interfacial properties can only be inferred indirectly and qualitatively. In parallel, molecular dynamics simulations of the pull-out tests will be conducted at size-scales relevant to the experiments. This complementary approach facilitates comparison between the results of experiments and simulations. The simulations will provide insights into the fine graphene-polymer interfacial details not accessible by experiments, and will guide further experiments. This complementary experimental and computational effort will provide mechanistic understanding of the nanoscale interfacial strengthening processes, and decipher the roles of the size and morphology of the embedded graphene on the mechanical strength of graphene-polymer interfaces.
与常规聚合物复合材料相比,聚合物纳米复合材料在低得多的填料组分重量下显示出显著的性能增强。石墨烯由于其高刚度和强度而被认为是聚合物中增强添加剂的理想候选物。然而,对石墨烯-聚合物界面的强度性质缺乏基本的理解。该合作研究奖支持基础研究,以提供对选定聚合物和石墨烯之间界面的应力传递过程的机械理解。这些过程最终控制石墨烯聚合物纳米复合材料的刚度、强度和韧性。这项研究将有助于实现轻,强,坚韧聚合物纳米复合材料。这种先进的材料将影响航空航天和汽车工业。这项研究跨越了制造、机械、材料科学和纳米技术等学科。这项多学科研究的结果将被纳入两所大学现有的本科课程。研究结果还将成为K-12夏令营学生新系列讲座的基础,向这些未来的工程师介绍聚合物纳米复合材料作为下一代航空航天材料的主题。 石墨烯-聚合物界面的强度特性在石墨烯基纳米复合材料的体相力学响应中起着关键作用。然而,在与石墨烯从聚合物基质中拉出相关的剪切变形期间发生的复杂纳米级现象尚未得到很好的理解。该合作研究奖支持在纳米级石墨烯-聚合物界面的变形,负载转移和失效的研究。互补的实验和计算方法相结合。研究小组将使用独特的原位纳米机械表征技术对嵌入聚合物基质中的单个石墨烯片进行拉拔测试。纳米力学拔出实验将提供直接和定量的界面强度性能的测量。这些实验代表了相对于本体复合材料性质的先前宏观测量的显著进步,其中石墨烯-聚合物界面性质只能间接和定性地推断。与此同时,将在与实验相关的尺寸尺度上进行拔出试验的分子动力学模拟。这种互补的方法有利于实验和模拟结果之间的比较。模拟将提供对实验无法访问的精细石墨烯-聚合物界面细节的见解,并将指导进一步的实验。这种互补的实验和计算工作将提供纳米级界面强化过程的机械理解,并破译嵌入式石墨烯的大小和形态对石墨烯-聚合物界面的机械强度的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huck Beng Chew其他文献
Microvoiding and constitutive damage modeling with artificial neural networks
使用人工神经网络的微孔化和本构损伤建模
- DOI:
10.1016/j.ijsolstr.2024.113125 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:3.800
- 作者:
Ning Li;Huck Beng Chew - 通讯作者:
Huck Beng Chew
In situ synchrotron X-ray diffraction and crystal plasticity studies of the deformation and fatigue crack growth behavior in a TRIP-assisted advanced high strength steel
对一种相变诱导塑性(TRIP)辅助先进高强度钢的变形及疲劳裂纹扩展行为进行原位同步辐射X射线衍射和晶体塑性研究
- DOI:
10.1016/j.actamat.2025.121122 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:9.300
- 作者:
Di Xie;Lu Huang;Hua-Chu Shih;Huy Tran;Huck Beng Chew;Zongyang Lyu;Peter K. Liaw;Yang Ren;Allan F. Bower;Yanfei Gao - 通讯作者:
Yanfei Gao
A review of the multiscale mechanics of silicon electrodes in high-capacity lithium-ion batteries
高容量锂离子电池硅电极多尺度力学综述
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Haoran Wang;Shao;Xueju Wang;S. Xia;Huck Beng Chew - 通讯作者:
Huck Beng Chew
Huck Beng Chew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huck Beng Chew', 18)}}的其他基金
Collaborative Research: Exploiting Nanoscale Interfaces to Enhance Bulk Mechanical Response of Additively Manufactured Boron Nitride Nanotube-Metal Composites
合作研究:利用纳米级界面增强增材制造氮化硼纳米管金属复合材料的整体机械响应
- 批准号:
2009684 - 财政年份:2020
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
Collaborative Research: In situ Diffraction and Cohesive-Zone Studies of the Fatigue-Crack-Growth Behavior in Mg Alloys
合作研究:镁合金疲劳裂纹扩展行为的原位衍射和内聚区研究
- 批准号:
1809696 - 财政年份:2018
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
Collaborative Research: Fracture Toughness of Lithium-Ion Battery Electrodes: An Integrative Experimental and Computational Study
合作研究:锂离子电池电极的断裂韧性:综合实验和计算研究
- 批准号:
1300805 - 财政年份:2013
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134747 - 财政年份:2024
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
- 批准号:
2244696 - 财政年份:2023
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 20.3万 - 项目类别:
Continuing Grant
Collaborative Research: High-velocity and long-displacement stick-slips: Experimental analogs of earthquake rupture and the seismic cycle
合作研究:高速和长位移粘滑运动:地震破裂和地震周期的实验模拟
- 批准号:
2240418 - 财政年份:2023
- 资助金额:
$ 20.3万 - 项目类别:
Continuing Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
- 批准号:
2246686 - 财政年份:2023
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
Collaborative Research: Enhancing Chemoselectivity and Efficiency Through Control of Axial Coordination in Rh(II) Complexes: An Experimental and Computational Approach
合作研究:通过控制 Rh(II) 配合物的轴向配位提高化学选择性和效率:实验和计算方法
- 批准号:
2247836 - 财政年份:2023
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
Collaborative Research: Experimental General Relativity using Radio Interferometry of a Black Hole Photon Ring
合作研究:利用黑洞光子环射电干涉测量的实验广义相对论
- 批准号:
2307887 - 财政年份:2023
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
- 批准号:
2246687 - 财政年份:2023
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant