CAREER: Ionic and Thermal Transport Properties of Complex Oxides from First Principles

职业:从第一原理看复杂氧化物的离子和热传输特性

基本信息

  • 批准号:
    1550347
  • 负责人:
  • 金额:
    $ 47.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARYIonic and thermal transport phenomena are ubiquitous in the chemical, biological and physical sciences. For example, the movement of heat or ions plays a crucial role in the efficiency, lifetime, and cost of many important technologies, such as high-power electronics, batteries, and jet engines. However, despite the importance of these processes to many technologies, understanding how the ionic and thermal transport properties of materials depend on the way their atoms are arranged is very challenging. This impedes our understanding of the properties of existing materials and hinders the design of new materials with enhanced properties. This CAREER award supports theoretical and computational research and education that aims to use computers to predict and understand the ionic and thermal transport properties of materials. In particular, the PI will elucidate the atomic-scale factors that determine how quickly ions can move through materials. This knowledge is critical to the design of more efficient energy devices, since the power delivered by batteries and fuel cells is largely determined by the rate at which ions can be inserted and extracted from the electrodes and transported through the electrolyte. The research team will also focus on the connection between a material's crystal structure and its ability to transport heat. Thermal properties of materials are important in many applications, including e.g. microelectronics (where heat needs to be transported away as efficiently as possible) and thermal barrier coatings, which protect the structural components of gas-turbine engines from excessive heat. The PI will use a combination of symmetry principles, simple crystal chemical models and large-scale quantum mechanical computations to develop the fundamental understanding that would allow the design of new materials with tailored thermal properties.The educational component of this CAREER award has two goals. The first is to engage the general public and promote a more inclusive image of science by upending the popular stereotypes associated with scientists and their work. To achieve this goal, the PI will conduct public outreach in Austin highlighting stories and contributions of scientists that may be less well known to the general public. Such direct public outreach should allow the PI to portray the work of scientists in a way that is more engaging and realistic than what is normally encountered on television or film. The second educational goal is focused on developing a set of computational exercises to teach key materials science concepts to undergraduate engineering students in a more effective way. Computational skills are vital for engineering graduates entering the workforce, as engineering and manufacturing businesses increasingly rely on computational approaches in many areas of product development. By working in close collaboration with experts in materials informatics and undergraduate education, the PI will integrate computational materials and materials informatics research with this education initiative to equip engineering students with the skills they will need to succeed in the modern engineering workforce. TECHNICAL SUMMARYThis CAREER award supports theoretical and computational research that will unravel the microscopic mechanisms of ionic and thermal transport in the complex oxides materials family. The PI will use a combination of symmetry principles, simple crystal chemical models and first-principles calculations to uncover the fundamental knowledge that will facilitate the rational design of materials with tailored transport properties. First-principles techniques are crucial for the discovery of new ideas and insights into the ionic and thermal transport properties of materials because mechanistic details are typically not available from experiments alone. This research program will address several open questions related to the ionic and thermal transport properties of complex oxides. These include (i) the effects of dimensionality and atomic disorder on ionic transport in layered oxides, (ii) the strong coupling between specific structural distortions and ionic transport and the control of these distortions (and hence transport properties) in oxide thin-films through epitaxial strain, (iii) the role of electron-lattice interactions in reducing (lattice) thermal conductivity and (iv) the origin of the anomalously low thermal conductivity observed in some ferroelectric oxides. The educational component of this CAREER award has two goals. The first is to engage the general public and promote a more inclusive image of science by upending the popular stereotypes associated with scientists and their work. To achieve this goal, the PI will conduct public outreach in Austin highlighting stories and contributions of scientists that may be less well known to the general public. Such direct public outreach should allow the PI to portray the work of scientists in a way that is more engaging and realistic than what is normally encountered on television or film. The second educational goal is focused on developing a set of computational exercises to teach key materials science concepts to undergraduate engineering students in a more effective way. Computational skills are vital for engineering graduates entering the workforce, as engineering and manufacturing businesses increasingly rely on computational approaches in many areas of product development. By working in close collaboration with experts in materials informatics and undergraduate education, the PI will integrate computational materials and materials informatics research with this education initiative to equip engineering students with the skills they will need to succeed in the modern engineering workforce.
离子和热传输现象在化学、生物和物理科学中普遍存在。例如,热或离子的运动在许多重要技术的效率、寿命和成本中起着至关重要的作用,如高功率电子设备、电池和喷气发动机。 然而,尽管这些过程对许多技术很重要,但理解材料的离子和热传输特性如何取决于其原子的排列方式是非常具有挑战性的。这阻碍了我们对现有材料性能的理解,并阻碍了具有增强性能的新材料的设计。该职业奖支持理论和计算研究和教育,旨在使用计算机来预测和理解材料的离子和热传输特性。特别是,PI将阐明决定离子在材料中移动速度的原子尺度因素。这一知识对于设计更高效的能源设备至关重要,因为电池和燃料电池提供的功率在很大程度上取决于离子插入电极和从电极提取以及通过电解质传输的速率。研究团队还将重点研究材料的晶体结构与其传热能力之间的联系。材料的热性能在许多应用中是重要的,包括例如微电子(其中需要尽可能有效地将热量传输出去)和热障涂层,其保护燃气涡轮发动机的结构部件免受过热的影响。PI将使用对称性原理、简单的晶体化学模型和大规模量子力学计算的组合来发展基本的理解,从而能够设计出具有定制热性能的新材料。该职业奖的教育部分有两个目标。第一是通过颠覆与科学家及其工作有关的流行定型观念,让公众参与进来,促进更具包容性的科学形象。为了实现这一目标,PI将在奥斯汀开展公众宣传,突出可能不太为公众所知的科学家的故事和贡献。这种直接的公众宣传应使PI能够以一种比通常在电视或电影中遇到的更吸引人和更现实的方式来描述科学家的工作。第二个教育目标是专注于开发一套计算练习,以更有效的方式向本科工程专业学生教授关键的材料科学概念。 计算技能对于工程毕业生进入劳动力市场至关重要,因为工程和制造企业在产品开发的许多领域越来越依赖计算方法。 通过与材料信息学和本科教育专家密切合作,PI将把计算材料和材料信息学研究与这项教育计划相结合,使工程专业的学生掌握在现代工程队伍中取得成功所需的技能。 该职业奖支持理论和计算研究,这些研究将揭示复杂氧化物材料家族中离子和热传输的微观机制。PI将使用对称性原理,简单的晶体化学模型和第一原理计算的组合来揭示基础知识,这将有助于合理设计具有定制传输特性的材料。第一性原理技术对于发现新的想法和深入了解材料的离子和热输运性质至关重要,因为机械细节通常无法仅从实验中获得。该研究计划将解决与复合氧化物的离子和热输运性质有关的几个开放性问题。这些包括(i)维度和原子无序对层状氧化物中离子输运的影响,(ii)特定结构畸变和离子输运之间的强耦合以及这些畸变的控制(以及因此的传输特性),(iii)电子-晶格相互作用在降低(晶格)热导率中的作用,以及(iv)在某些铁电氧化物中观察到的极低热导率的起源。这个职业奖的教育部分有两个目标。第一是通过颠覆与科学家及其工作有关的流行定型观念,让公众参与进来,促进更具包容性的科学形象。为了实现这一目标,PI将在奥斯汀开展公众宣传,突出可能不太为公众所知的科学家的故事和贡献。这种直接的公众宣传应使PI能够以一种比通常在电视或电影中遇到的更吸引人和更现实的方式来描述科学家的工作。第二个教育目标是专注于开发一套计算练习,以更有效的方式向本科工程专业学生教授关键的材料科学概念。 计算技能对于工程毕业生进入劳动力市场至关重要,因为工程和制造企业在产品开发的许多领域越来越依赖计算方法。 通过与材料信息学和本科教育专家密切合作,PI将把计算材料和材料信息学研究与这项教育计划相结合,使工程专业的学生掌握在现代工程队伍中取得成功所需的技能。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cation Exchange as a Mechanism To Engineer Polarity in Layered Perovskites
  • DOI:
    10.1021/acs.chemmater.8b04136
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Tong Zhu;G. Khalsa;Dana Havas;A. Gibbs;Weiguo Zhang;P. Halasyamani;N. Benedek;M. Hayward
  • 通讯作者:
    Tong Zhu;G. Khalsa;Dana Havas;A. Gibbs;Weiguo Zhang;P. Halasyamani;N. Benedek;M. Hayward
Interplay between Phonons and Anisotropic Elasticity Drives Negative Thermal Expansion in PbTiO3
声子和各向异性弹性之间的相互作用驱动 PbTiO3 的负热膨胀
  • DOI:
    10.1103/physrevlett.121.255901
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Ritz, Ethan T.;Benedek, Nicole A.
  • 通讯作者:
    Benedek, Nicole A.
Theory and Neutrons Combine To Reveal a Family of Layered Perovskites without Inversion Symmetry
  • DOI:
    10.1021/acs.chemmater.7b03604
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Tong Zhu;T. Cohen;A. Gibbs;Weiguo Zhang;P. Halasyamani;M. Hayward;N. Benedek
  • 通讯作者:
    Tong Zhu;T. Cohen;A. Gibbs;Weiguo Zhang;P. Halasyamani;M. Hayward;N. Benedek
Ultrafast optically induced ferromagnetic/anti-ferromagnetic phase transition in GdTiO3 from first principles
  • DOI:
    10.1038/s41535-018-0086-3
  • 发表时间:
    2018-03-12
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Khalsa, Guru;Benedek, Nicole A.
  • 通讯作者:
    Benedek, Nicole A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicole Benedek其他文献

Nicole Benedek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicole Benedek', 18)}}的其他基金

Harnessing unconventional structural degrees of freedom to design new hybrid layered perovskites
利用非常规结构自由度设计新型混合层状钙钛矿
  • 批准号:
    2312751
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
CAREER: Ionic and Thermal Transport Properties of Complex Oxides from First Principles
职业:从第一原理看复杂氧化物的离子和热传输特性
  • 批准号:
    1454096
  • 财政年份:
    2015
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

ionic Hubbard 模型中符号问题与量子相变的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
LiNO3 - Ionic Liquids/H2O新型吸收式热泵工质对的物性与应用研究
  • 批准号:
    51506005
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of thermal electric hybrid heat pump with HFC-1234yf and ionic liquid pair
HFC-1234yf与离子液体对热电混合热泵的研制
  • 批准号:
    19K14917
  • 财政年份:
    2019
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Molecular level insight on thermal stability of ionic liquids
离子液体热稳定性的分子水平洞察
  • 批准号:
    407078203
  • 财政年份:
    2018
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Research Grants
Ionic and Molecular Materials of High Thermal Stability: Design, Structure, and Function
高热稳定性离子和分子材料:设计、结构和功能
  • 批准号:
    1800122
  • 财政年份:
    2018
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Determination of the limited paramaters for usage of the ionic liquids: thermal stability, evaporation mechanisms and determination of the maximum operating temperatures of imidazolium-based ionic liquids
离子液体使用限制参数的确定:咪唑基离子液体的热稳定性、蒸发机理和最高工作温度的确定
  • 批准号:
    397068135
  • 财政年份:
    2018
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Research Grants
CAREER: Ionic and Thermal Transport Properties of Complex Oxides from First Principles
职业:从第一原理看复杂氧化物的离子和热传输特性
  • 批准号:
    1454096
  • 财政年份:
    2015
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Ionic Liquids of Improved Thermal Stability
热稳定性提高的离子液体
  • 批准号:
    1464740
  • 财政年份:
    2015
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Low-temperature Synthesis of Thermoelectric Materials by Thermal Decomposition of Tailor-made Precursors in Ionic Liquids
通过离子液体中特制前驱体的热分解低温合成热电材料
  • 批准号:
    253338307
  • 财政年份:
    2014
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Priority Programmes
Development of Emissive Ionic Liquid Gels Having Thermal Response
具有热响应的发射离子液体凝胶的开发
  • 批准号:
    23550159
  • 财政年份:
    2011
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An Innovative Microfabricated Ionic Wind Pump Array for Thermal Management Applications
用于热管理应用的创新微制造离子风泵阵列
  • 批准号:
    1067159
  • 财政年份:
    2011
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Study on the thermal efficiency improvement of the thermochemical water-splitting iodine-sulfur process using an ionic liquid
离子液体热化学分解水碘硫工艺热效率提升研究
  • 批准号:
    21760722
  • 财政年份:
    2009
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了