EAGER: The Exploration of Geometric and Non-Geometric Structure in Data
EAGER:数据中几何和非几何结构的探索
基本信息
- 批准号:1550757
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2017-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of machine learning is to extract useful information from data. While the amount of data available to researchers for analysis is ever increasing, much of the data are unlabeled, meaning that the data come without labels indicating their associations with specific learning tasks. Thus understanding unsupervised inference is one of the key problems in machine learning. In addition, data annotated for a certain task may be difficult to use even for tasks only slightly different. This is known as the problem of transfer learning in the literature. To make the most of the available information, machine learning algorithms need to to obtain, analyze and use realistic structural assumptions about the data based on rigorous mathematical models. The proposed work offers students working on this project an opportunity to be exposed to a broad spectrum of topics including machine learning, statistics, geometry and applied mathematics. Students will learn a combination of theory and algorithm development skills in machine learning and data analysis. The results of this work will be disseminated to the broad scientific community through publications in journals, conferences, presentations in various venues, including tutorials and course notes. The material related to this project will be incorporated in PI?s and co-PI's courses. The PIs will also create summer research and practice opportunities for interested undergraduate students in research related to the project. In this EAGER project an exploration of two types of structural assumptions on the data will be started. Geometric structures in data will be explored, such as hierarchical structure of clusters and density. The use of partial orders for non-geometric data will be explored, based on probabilistic models for partial rankings an orders for problems such as zero-shot learning and transfer learning. By approaching the problem of inference from data within these frameworks, output of this project will be a stepping stone to the challenges of machine learning and to developing efficient algorithms to advance the state-of-the-art both in theory and practice. It is argued argue that these models and the proposed mathematical/algorithmic machinery are amenable to theoretical analysis and will provide insight into properties of real data. Results from the proposed work will broaden the scope of machine learning methods to analyze more complex data in a theoretically well-founded manner.
机器学习的目标是从数据中提取有用的信息。 虽然研究人员可用于分析的数据量不断增加,但大部分数据都是未标记的,这意味着数据没有标签,表明它们与特定学习任务的关联。因此,理解无监督推理是机器学习的关键问题之一。 此外,为某个任务注释的数据可能难以使用,即使对于仅略有不同的任务也是如此。 这在文献中被称为迁移学习问题。 为了充分利用可用信息,机器学习算法需要基于严格的数学模型来获取、分析和使用关于数据的现实结构假设。拟议的工作为从事该项目的学生提供了一个接触广泛主题的机会,包括机器学习,统计,几何和应用数学。学生将学习机器学习和数据分析方面的理论和算法开发技能。这项工作的成果将通过在期刊上发表文章、会议、在各种场合的介绍,包括教程和课程说明,向广大科学界传播。 与本项目相关的材料将纳入PI?和Co-PI的课程。PI还将为感兴趣的本科生创造夏季研究和实践机会,以进行与该项目相关的研究。在这个EAGER项目中,将开始探索两种类型的数据结构假设。 将探索数据中的几何结构,例如聚类和密度的层次结构。将探索使用非几何数据的偏序,基于概率模型的部分排名和零射击学习和迁移学习等问题的顺序。通过解决这些框架内的数据推理问题,该项目的输出将成为机器学习挑战的垫脚石,并开发有效的算法,以在理论和实践上推进最先进的技术。 有人认为,这些模型和建议的数学/算法的机器是服从理论分析,并将提供洞察真实的数据的属性。拟议工作的结果将扩大机器学习方法的范围,以理论上有根据的方式分析更复杂的数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Belkin其他文献
No . TR-134 Consistency of Spectral Clustering
不 。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
U. V. Luxburg;Mikhail Belkin;Olivier Bousquet - 通讯作者:
Olivier Bousquet
Understanding Inverse Scaling and Emergence in Multitask Representation Learning
了解多任务表示学习中的逆缩放和涌现
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
M. E. Ildiz;Zhe Zhao;Samet Oymak;Xiangyu Chang;Yingcong Li;Christos Thrampoulidis;Lin Chen;Yifei Min;Mikhail Belkin;Aakanksha Chowdhery;Sharan Narang;Jacob Devlin;Maarten Bosma;Gaurav Mishra;Adam Roberts;Liam Collins;Hamed Hassani;M. Soltanolkotabi;Aryan Mokhtari;Sanjay Shakkottai;Provable;Simon S. Du;Wei Hu;S. Kakade;Chelsea Finn;A. Rajeswaran;Deep Ganguli;Danny Hernandez;Liane Lovitt;Amanda Askell;Yu Bai;Anna Chen;Tom Conerly;Nova Dassarma;Dawn Drain;Sheer Nelson El;El Showk;Stanislav Fort;Zac Hatfield;T. Henighan;Scott Johnston;Andy Jones;Nicholas Joseph;Jackson Kernian;Shauna Kravec;Benjamin Mann;Neel Nanda;Kamal Ndousse;Catherine Olsson;D. Amodei;Tom Brown;Jared Ka;Sam McCandlish;Chris Olah;Dario Amodei;Trevor Hastie;Andrea Montanari;Saharon Rosset;Jordan Hoffmann;Sebastian Borgeaud;A. Mensch;Elena Buchatskaya;Trevor Cai;Eliza Rutherford;Diego de;Las Casas;Lisa Anne Hendricks;Johannes Welbl;Aidan Clark;Tom Hennigan;Eric Noland;Katie Millican;George van den Driessche;Bogdan Damoc;Aurelia Guy;Simon Osindero;Karen Si;Erich Elsen;Jack W. Rae;O. Vinyals;Jared Kaplan;B. Chess;R. Child;S. Gray;Alec Radford;Jeffrey Wu;I. R. McKenzie;Alexander Lyzhov;Michael Pieler;Alicia Parrish;Aaron Mueller;Ameya Prabhu;Euan McLean;Aaron Kirtland;Alexis Ross;Alisa Liu;Andrew Gritsevskiy;Daniel Wurgaft;Derik Kauff;Gabriel Recchia;Jiacheng Liu;Joe Cavanagh;Tom Tseng;Xudong Korbak;Yuhui Shen;Zhengping Zhang;Najoung Zhou;Samuel R Kim;Bowman Ethan;Perez;Feng Ruan;Youngtak Sohn - 通讯作者:
Youngtak Sohn
Mikhail Belkin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Belkin', 18)}}的其他基金
RI: Small: Learning discrete structure from continuous spaces
RI:小:从连续空间学习离散结构
- 批准号:
2050360 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
RI: Small: Learning discrete structure from continuous spaces
RI:小:从连续空间学习离散结构
- 批准号:
1815697 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
PFI:AIR-TT: Continuous-wave room-temperature terahertz quantum cascade laser sources
PFI:AIR-TT:连续波室温太赫兹量子级联激光源
- 批准号:
1701141 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Support for International Quantum Cascade Laser School and Workshop (IQCLSW) 2016. Held in Cambridge, United Kingdom on September 4-9, 2016.
支持 2016 年国际量子级联激光学校和研讨会 (IQCLSW)。于 2016 年 9 月 4-9 日在英国剑桥举行。
- 批准号:
1624722 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
AF: Small: Geometry and High-dimensional Inference
AF:小:几何和高维推理
- 批准号:
1422830 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Broadband THz frequency comb generation in quantum cascade lasers
量子级联激光器中宽带太赫兹频率梳的产生
- 批准号:
1408511 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
EAGER: Ultrathin metasurfaces for low-intensity nonlinear optics
EAGER:用于低强度非线性光学的超薄超表面
- 批准号:
1348049 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
RI: Small: Hard Clustering via Bayesian Nonparametrics
RI:小:通过贝叶斯非参数进行硬聚类
- 批准号:
1217433 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CAREER: Terahertz semiconductor laser sources for operation above cryogenic temperatures
职业:太赫兹半导体激光源在低温下运行
- 批准号:
1150449 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
RI: Small: Algebraic and Spectral Structure of Data in High Dimension
RI:小:高维数据的代数和谱结构
- 批准号:
1117707 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 15万 - 项目类别:
Fellowship
Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
- 批准号:
2409316 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
- 批准号:
2344156 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Exploration of relationship between floods, poverty, and dynamic environmental sustainability
探索洪水、贫困和动态环境可持续性之间的关系
- 批准号:
24K07692 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enabling a circular economy for poultry via exploration of metabolism
通过探索新陈代谢实现家禽循环经济
- 批准号:
DE240100802 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Discovery Early Career Researcher Award
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
- 批准号:
EP/Y000862/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Conference: Artificial Intelligence for Multidisciplinary Exploration and Discovery (AIMED) in Heterogeneous Catalysis: A Workshop
会议:多相催化中的多学科探索和发现人工智能(AIMED):研讨会
- 批准号:
2409631 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Deciphering plant stress memory: the exploration of how DNA methylation and the rhizosphere microbiome control stress memory in plants
解读植物逆境记忆:探索DNA甲基化和根际微生物如何控制植物逆境记忆
- 批准号:
BB/Z514810/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Fellowship
The Avebury Papers: digitisation, exploration and creative re-use of a uniquely important archaeological archive.
埃夫伯里文件:对独特重要的考古档案的数字化、探索和创造性再利用。
- 批准号:
AH/W003619/2 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant