Conference in Mathematical General Relativity; January 5 - 9, 2016; Sanya, Hainan, China.

数学广义相对论会议;

基本信息

项目摘要

The conference "Mathematical General Relativity", January 5 - 9, 2016, will be held at the Tsinghua Sanya International Mathematics Forum in Sanya, Hainan, China. This award provides travel support for US PhD students, postdocs and scientists to participate in the conference, which is sponsored by the Tsinghua Sanya International Mathematics Forum. In particular, this award enables students and early career researchers, who do not have other financial resources, to join the conference and to interact with international leading experts in the field. Mathematical general relativity (GR) studies the laws of the universe encoded in the Einstein equations linking the curvature of spacetime to its matter content by means of mainly geometric analysis. It thereby generates further important research results in geometric analysis as well as it answers burning physical questions about the universe. The nature of these problems require a deep understanding of the underlying geometry and the analysis of nonlinear partial differential equations. This conference will bring together leading international researchers working in different areas of mathematical general relativity to discuss their results, to initiate new collaborations and to investigate new directions of research in this field. In recent years, monumental breakthroughs in mathematical GR and geometric analysis have occurred. Among them we find the results showing that through the focusing of gravitational waves a closed trapped surface and subsequently a black hole will form. Moreover, initial data engineering has made huge progress through gluing techniques. Geometric flows and energy methods have proven to be essential in solving important problems in all areas of mathematical GR. New insights on the nature of gravitational waves, which are believed to be detected in the near future, have been obtained by geometric-analytic as well as numerical methods. Similar geometric-analytic techniques were used to gain new insights in other mathematical fields. A major goal of this conference is to facilitate interactions between different groups working in GR, including geometric analysts, physicists, astrophysicists and numerical relativists. The topics that will be discussed at this event range from gravitational waves to stability and formation of black holes, to strong cosmic censorship, to concepts of energy and quasilocal mass and related phenomena. In all these areas geometric analysis has played key roles in advancing exciting research in both mathematical and physical directions. A crucial point of the conference is to forge professional links between experts and graduate students as well as early career researchers, in particular to expose students and early career researchers to new developments in these areas. Conference website: http://ymsc.tsinghua.edu.cn/sanya/2016/CGR2016/home.aspx
2016年1月5日至9日,“数学广义相对论”会议将在中国海南三亚的清华三亚国际数学论坛上举行。该奖项为美国博士生,博士后和科学家提供旅行支持,以参加由清华三亚国际数学论坛赞助的会议。特别是,该奖项使没有其他经济来源的学生和早期职业研究人员能够参加会议并与该领域的国际领先专家进行互动。数学广义相对论(GR)主要通过几何分析研究爱因斯坦方程中编码的宇宙定律,将时空的曲率与其物质含量联系起来。它从而产生进一步的重要研究成果,在几何分析,以及它回答了燃烧的物理问题的宇宙。这些问题的性质需要深入了解基本的几何和非线性偏微分方程的分析。这次会议将汇集在数学广义相对论的不同领域工作的领先的国际研究人员,讨论他们的结果,发起新的合作,并探讨在这一领域的研究新方向。近年来,在数学GR和几何分析中出现了重大突破。其中,我们发现的结果表明,通过引力波的聚焦,一个封闭的捕获面,随后一个黑洞将形成。此外,通过粘合技术,初始数据工程已经取得了巨大的进步。几何流和能量的方法已被证明是必不可少的,在解决重要问题的所有领域的数学GR。新的见解引力波的性质,这被认为是在不久的将来被检测到,已经获得了几何分析以及数值方法。类似的几何分析技术被用来在其他数学领域获得新的见解。这次会议的一个主要目标是促进在GR工作的不同群体之间的互动,包括几何分析师,物理学家,天体物理学家和数值相对论。将在这次活动中讨论的主题范围从引力波到黑洞的稳定性和形成,到强宇宙审查,到能量和准局部质量的概念以及相关现象。在所有这些领域中,几何分析在推进数学和物理方向的令人兴奋的研究中发挥了关键作用。会议的一个关键点是在专家和研究生以及早期职业研究人员之间建立专业联系,特别是让学生和早期职业研究人员了解这些领域的新发展。会议网址:http://ymsc.tsinghua.edu.cn/sanya/2016/CGR2016/home.aspx

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lydia Bieri其他文献

Lydia Bieri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lydia Bieri', 18)}}的其他基金

Geometric Analysis: Investigating the Einstein Equations and Other Partial Differential Equations
几何分析:研究爱因斯坦方程和其他偏微分方程
  • 批准号:
    2204182
  • 财政年份:
    2022
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Geometric-Analytic Studies of the Einstein Equations and Other Partial Differential Equations
爱因斯坦方程和其他偏微分方程的几何分析研究
  • 批准号:
    1811819
  • 财政年份:
    2018
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
CAREER: Geometric-Analytic Investigations of Spacetimes and their Nonlinear Phenomena
职业:时空及其非线性现象的几何分析研究
  • 批准号:
    1253149
  • 财政年份:
    2013
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
"K\"ahler-Ricci Flow with Degenerate Cohomology Limit
具有简并上同调极限的“K”ahler-Ricci 流
  • 批准号:
    0904760
  • 财政年份:
    2009
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant

相似海外基金

MATHEMATICAL PROBLEMS IN GENERAL RELATIVITY
广义相对论中的数学问题
  • 批准号:
    2304445
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Mathematical Cosmology and Invariants in General Relativity
数学宇宙学和广义相对论中的不变量
  • 批准号:
    RGPIN-2018-04045
  • 财政年份:
    2022
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical problems in general relativity
广义相对论中的数学问题
  • 批准号:
    RGPIN-2017-06103
  • 财政年份:
    2021
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Cosmology and Invariants in General Relativity
数学宇宙学和广义相对论中的不变量
  • 批准号:
    RGPIN-2018-04045
  • 财政年份:
    2021
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Problems in General Relativity
广义相对论中的数学问题
  • 批准号:
    2005435
  • 财政年份:
    2020
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Mathematical problems in general relativity
广义相对论中的数学问题
  • 批准号:
    RGPIN-2017-06103
  • 财政年份:
    2020
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Cosmology and Invariants in General Relativity
数学宇宙学和广义相对论中的不变量
  • 批准号:
    RGPIN-2018-04045
  • 财政年份:
    2020
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical problems in general relativity
广义相对论中的数学问题
  • 批准号:
    2478319
  • 财政年份:
    2020
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Studentship
Mathematical problems in general relativity
广义相对论中的数学问题
  • 批准号:
    RGPIN-2017-06103
  • 财政年份:
    2019
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Cosmology and Invariants in General Relativity
数学宇宙学和广义相对论中的不变量
  • 批准号:
    RGPIN-2018-04045
  • 财政年份:
    2019
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了