CAREER: Digital plasmonics-based nano-tweezing and nano-imaging for nano-particles

职业:基于数字等离子体的纳米镊子和纳米颗粒纳米成像

基本信息

  • 批准号:
    1552642
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-02-01 至 2022-01-31
  • 项目状态:
    已结题

项目摘要

Light is an extremely powerful tool to probe, image, and even manipulate small objects. Unfortunately, since light is a wave it is limited by diffraction, or the tendency of all waves to spread out. As a result very small nano-sized objects like the basic components of cells, single molecules, viruses, and nano-devices are too small to beindividually probed, manipulated, and imaged directly with light. However, the field of 'plasmonics' allows manipulating light with sub-wavelength precision at the surface of metallic nano-structures. Plasmons can squeeze their optical energy into ~10 nanometer spaces, an ideal size for directly interacting with nano-sized objects that are on or near these metallic surfaces. Precise manipulation of plasmons requires careful illumination with light, and extremely sensitive optical recording equipment. PI has the capability of digital and computational techniques to both: (1) excite plasmons to directly manipulate nano-objects under computer control; and (2) carefully record the behavior of plasmons to directly image the shape, size, and thickness of nano-objects. These digital techniques will open up new opportunities for scientists under precise computer control to directly study, probe, image, manipulate, and interact with nano-sized objects such as DNA, protein molecules, quantum dots, viruses, or nanoparticles. Furthermore, since this research is being performed exclusively with undergraduate students, it promises to inspire, motivate, and train many new young scientists and engineers.The emergence of digital techniques that explicitly model the propagation of light has revolutionized optical imaging and optical tweezing through 'digital holographic microscopy' and 'computer generated holography'. These techniques offer many advantages over conventional optics such as: (1) imaging or generating the full complex wave; (2) fast beam scanning with no moving parts; (3) dynamic manipulation of trapped objects; (4) eliminating aberrations and imaging through scattering media; and (5) freedom to choose any imaging modality, e.g. phase vs. amplitude contrast. Unfortunately, these powerful digital techniques have not yet been fully realized in near-field optics, and in particular, with plasmons. Indeed, plasmonic nano-imaging and nano-tweezing have recently generated immense interest to trap, probe, manipulate, and image nano-sized objects such as viruses, nanoparticles, and individual molecules. Therefore, introducing powerful digital optical techniques into the near-field promises to have a large impact. Specifically, a spatial light modulator will be used to generate computer-controlled, tightly focused plasmons for nano-tweezing and high-spatial frequency plasmonic fields for super-resolution imaging. The phase of the plasmon waves will also be imaged by designing interferometers directly into the nano-metallic substrates or by recording a digital hologram of the reflected or transmitted light. These two techniques will enable significant new capabilities such as: (1) super-resolution, high-speed plasmonic phase-contrast imaging to image the thickness of biological structures; (2) trapping and real-time manipulation of nano-metric objects for nanofabrication or sorting; and (3) optical probing of trapped nano-objects for spectroscopic characterization of single molecules.
光是探测、成像甚至操纵小物体的一种极其强大的工具。不幸的是,由于光是一种波,它受到衍射的限制,或者说受到所有波扩散的趋势的限制。因此,非常小的纳米尺寸的物体,如细胞,单分子,病毒和纳米器件的基本组成部分太小,无法单独探测,操纵和直接用光成像。然而,“等离子体激元”领域允许在金属纳米结构的表面以亚波长精度操纵光。等离子体激元可以将其光能压缩到约10纳米的空间中,这是与这些金属表面上或附近的纳米尺寸物体直接相互作用的理想尺寸。等离子体激元的精确操纵需要仔细的光照和极其灵敏的光学记录设备。PI具有数字和计算技术的能力:(1)激发等离子体激元以在计算机控制下直接操纵纳米物体;(2)仔细记录等离子体激元的行为以直接成像纳米物体的形状,尺寸和厚度。这些数字技术将为科学家在精确的计算机控制下直接研究、探测、成像、操纵和与纳米尺寸的物体(如DNA、蛋白质分子、量子点、病毒或纳米颗粒)相互作用开辟新的机会。此外,由于这项研究是专门与本科生进行的,它有望激励,激励和培养许多新的年轻科学家和工程师。数字技术的出现,明确地模拟光的传播已经彻底改变了光学成像和光学镊子通过'数字全息显微镜'和'计算机生成的全息'。这些技术提供了许多优于传统光学器件的优点,例如:(1)成像或生成全复波;(2)快速光束扫描,没有移动部件;(3)动态操纵捕获的物体;(4)消除像差并通过散射介质成像;以及(5)自由选择任何成像模态,例如相位对比幅度对比。不幸的是,这些强大的数字技术尚未完全实现近场光学,特别是等离子体激元。事实上,等离子体纳米成像和纳米镊子最近产生了巨大的兴趣,以捕获,探测,操纵和成像纳米尺寸的物体,如病毒,纳米颗粒和单个分子。因此,将强大的数字光学技术引入近场有望产生巨大的影响。具体来说,空间光调制器将用于产生计算机控制的、紧密聚焦的等离子体激元,用于纳米镊子和高空间频率等离子体激元场,用于超分辨率成像。等离子体波的相位也将通过将干涉仪直接设计到纳米金属衬底中或通过记录反射或透射光的数字全息图来成像。这两种技术将实现重要的新功能,例如:(1)超分辨率,高速等离子体相位衬度成像,以成像生物结构的厚度;(2)捕获和实时操纵纳米物体,用于纳米制造或分选;以及(3)光学探测捕获的纳米物体,用于单分子的光谱表征。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultra-High-Speed Dynamics in Surface-Enhanced Raman Scattering
  • DOI:
    10.1021/acs.jpcc.0c11150
  • 发表时间:
    2021-03-08
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Lindquist, Nathan C.;Brolo, Alexandre G.
  • 通讯作者:
    Brolo, Alexandre G.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathan Lindquist其他文献

Nathan Lindquist的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathan Lindquist', 18)}}的其他基金

RUI: High-Speed Imaging and Spectroscopy of Single Molecules
RUI:单分子的高速成像和光谱学
  • 批准号:
    2003750
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RUI: Super-resolution plasmon-enhanced imaging and spectroscopy with patterned metallic surfaces and dynamic illumination
RUI:具有图案金属表面和动态照明的超分辨率等离子体增强成像和光谱
  • 批准号:
    1306642
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

超灵敏高分辨的Digital-CRISPR技术用于免扩增的多重核酸检测
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Digital Twin的数控机床智能运行维护方法研究
  • 批准号:
    51875323
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于数字PCR(digital-PCR)技术的耳聋无创产前检测研究
  • 批准号:
    LQ19H040016
  • 批准年份:
    2018
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Digital LAMP技术的循环肿瘤细胞检测和分型新方法研究
  • 批准号:
    81702102
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于表面工程的外泌体digital PCR定量分析体系的构建及转化医学研究
  • 批准号:
    81702959
  • 批准年份:
    2017
  • 资助金额:
    10.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

IoDT2 - Internet of Digital Twin Things
IoDT2 - 数字孪生物联网
  • 批准号:
    10098627
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
Digital Solutions For Accelerated Battery Testing
加速电池测试的数字解决方案
  • 批准号:
    10107050
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    EU-Funded
Development of digital diagnostics services for Parkinson’s disease
开发帕金森病数字诊断服务
  • 批准号:
    10086932
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
  • 批准号:
    AH/Z000041/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Digital chemistry and catalysis: redefining reactions in confined systems
数字化学和催化:重新定义受限系统中的反应
  • 批准号:
    FL220100059
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Australian Laureate Fellowships
Cultivating digital music making in regional Australia
培育澳大利亚乡村地区的数字音乐制作
  • 批准号:
    DP240100680
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
Digital Death and Immortality
数字死亡与永生
  • 批准号:
    DP240100432
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
Audiobooks and digital book culture
有声读物和数字图书文化
  • 批准号:
    DE240100466
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Early Career Researcher Award
Art Box digital
艺术盒数码
  • 批准号:
    ES/Y010914/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Scaling a Digital Treasure Hunt Game
扩展数字寻宝游戏
  • 批准号:
    ES/Y01104X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了