CAREER: Engineering Structure and Ionic Conductivity in Li7La3Zr2O12 Nanowire-Based Solid Electrolytes
职业:Li7La3Zr2O12 纳米线固体电解质的工程结构和离子电导率
基本信息
- 批准号:1553519
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL DESCRIPTION: Lithium ion batteries are ubiquitous in laptops and cell phones and may gain more use in transportation applications in the near future. However, these batteries suffer from safety issues originating from the flammable liquid electrolyte that is used to transport lithium ions within the battery. One of the most promising candidates for a safer, replacement electrolyte is the ceramic lithium lanthanum zirconate (LLZO), which has good thermal/chemical stability and ionic transport properties. Nonetheless, there is still much fundamental research needed in order to improve understanding of several critical issues in LLZO and how to improve its performance. This project investigates novel LLZO nanowire structures and composites with unique nanoscale properties that can improve their conductivity for lithium ions and integration into safer, all-solid-state batteries. This project also supports education and outreach activities that focus on improving the pipeline and retention of female students in science and engineering through hands-on experiences that will increase understanding and retention of engineering concepts and stimulate the students' interests in research. Outreach to local middle school girls through a battery-related challenge to provide context on issues related to electric cars and research opportunities to high school, undergraduate, and graduate students are example activities. Educational efforts include international exchange of teaching methodologies with faculty in South Korea to understand strategies that promote female student achievement, as well as how to best engage students from diverse backgrounds in student-centered learning environments.TECHNICAL DETAILS: This research project aims to correlate composition, grain boundary structure, and crystal phase with ionic conductivity in LLZO nanowire materials prepared using electrospinning. Nanowire solid electrolytes can offer characteristics that are beneficial and advantageous compared to bulk materials - namely milder calcination conditions for crystallization, stabilization of metastable phases, and opportunities for unique structures such as core-shell composites. These characteristics can lead to properties that improve the ionic conductivity, sintering ability, and integration of the electrolytes into all-solid-state batteries. The nanowires are used to understand the LLZO phase stability, crystallization, and sintering processes. Core-shell nanowire structures are used to investigate interfacial properties and transport in composites to understand how to maximize highly conducting pathways for lithium ions and uniformly modify grain boundaries. Additionally, detailed in situ and aberration-corrected transmission electron microscopy is used to understand processes such as crystallization of electrospun nanowires, impurity segregation to grain boundaries, sintering in networks of nanowires, and interdiffusion at the electrolyte/cathode interface. This information is being correlated with ionic conductivity and electrochemical cycling tests on the nanowire solid electrolyte materials and compared to bulk materials. The insights gained from this work are enabling better control of composition, stabilization of metastable phases, sintering processes, and Li ion transport, which can ultimately lead to higher ionic conductivity ceramic electrolytes.
非技术描述:锂离子电池在笔记本电脑和手机中无处不在,在不久的将来可能会在交通应用中得到更多的使用。然而,这些电池遭受源自用于在电池内输送锂离子的易燃液体电解质的安全问题。更安全的替代电解质的最有前途的候选者之一是陶瓷锆酸镧锂(LLZO),其具有良好的热/化学稳定性和离子传输特性。尽管如此,为了提高对LLZO中几个关键问题的理解以及如何提高其性能,仍然需要进行大量的基础研究。该项目研究了具有独特纳米级特性的新型LLZO纳米线结构和复合材料,可以提高其对锂离子的导电性,并集成到更安全的全固态电池中。该项目还支持开展教育和外联活动,重点是通过增加对工程概念的理解和保留并激发学生研究兴趣的实践经验,改善理工科女生的培养和保留情况。通过与电池相关的挑战,向当地中学女生提供与电动汽车相关的问题的背景,并向高中生、本科生和研究生提供研究机会,这些都是示例活动。教育工作包括与韩国教师进行教学方法的国际交流,以了解促进女性学生成绩的策略,以及如何在以学生为中心的学习环境中最好地吸引来自不同背景的学生。技术专长:本研究项目旨在将使用静电纺丝制备的LLZO纳米线材料的成分,晶界结构和晶相与离子电导率相关联。纳米线固体电解质可以提供与块体材料相比有益和有利的特性-即用于结晶的温和煅烧条件、亚稳相的稳定化以及独特结构如核-壳复合物的机会。这些特性可以导致改善离子电导率、烧结能力以及将电解质整合到全固态电池中的性能。纳米线用于了解LLZO相稳定性、结晶和烧结过程。核壳纳米线结构用于研究复合材料中的界面性质和传输,以了解如何最大限度地提高锂离子的高导电路径并均匀地改变晶界。此外,详细的原位和像差校正的透射电子显微镜被用来理解的过程,如结晶的电纺纳米线,杂质偏析到晶界,烧结网络的纳米线,在电解质/阴极界面的相互扩散。这些信息与纳米线固体电解质材料的离子电导率和电化学循环测试相关,并与散装材料进行比较。从这项工作中获得的见解能够更好地控制组成,稳定亚稳相,烧结过程和Li离子传输,这最终可以导致更高的离子电导率陶瓷电解质。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pyrochlore nanocrystals as versatile quasi-single-source precursors to lithium conducting garnets
- DOI:10.1039/d0ta05842d
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:J. Weller;Candace K. Chan
- 通讯作者:J. Weller;Candace K. Chan
Reduction in Formation Temperature of Ta-Doped Lithium Lanthanum Zirconate by Application of Lux–Flood Basic Molten Salt Synthesis
- DOI:10.1021/acsaem.0c00716
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:J. Weller;Candace K. Chan
- 通讯作者:J. Weller;Candace K. Chan
Nanostructured Garnet-type Li7La3Zr2O12: Synthesis, Properties, and Opportunities as Electrolytes for Li-ion Batteries
- DOI:10.1016/j.electacta.2017.08.130
- 发表时间:2017-11-01
- 期刊:
- 影响因子:6.6
- 作者:Chan, Candace K.;Yang, Ting;Weller, J. Mark
- 通讯作者:Weller, J. Mark
Observation of Elemental Inhomogeneity and Its Impact on Ionic Conductivity in Li‐Conducting Garnets Prepared with Different Synthesis Methods
- DOI:10.1002/aesr.202000109
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:J. Weller;Andrew Dopilka;Candace K. Chan
- 通讯作者:J. Weller;Andrew Dopilka;Candace K. Chan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Candace Chan其他文献
Whole personhood in medical education: Visual thinking strategy, close reading, and creative practice with a diversity and equity lens
医学教育中的全人理念:基于多元与公平视角的视觉思维策略、深度阅读及创造性实践
- DOI:
10.1016/j.socscimed.2024.117645 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:5.000
- 作者:
Elizabeth Lahti;Natalie Lanocha;Cirila Estela Vasquez Guzman;Pamela Pierce;Candace Chan;Andrew Lee Breidenbach;Lisa Abia-Smith - 通讯作者:
Lisa Abia-Smith
Unveiling Mechanical Stress in Lithium-Metal Batteries for Flexible Electronics: A Novel Approach with Optical Techniques and Artificial Interfaces
揭示柔性电子产品锂金属电池中的机械应力:采用光学技术和人工接口的新方法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mayukh Nandy;Siyang Liu;Todd Houghton;Haiwei Wu;Candace Chan;Hongbin Yu - 通讯作者:
Hongbin Yu
The element carbon
碳元素
- DOI:
10.1201/9781315222127-1 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Frank Hennirch;Candace Chan;V. Moore;M. Rolandi;M. O'Connel - 通讯作者:
M. O'Connel
Candace Chan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Candace Chan', 18)}}的其他基金
PFI-TT: Fabrication of Solid Electrolyte Thin Films with Plasma Processing to Enable Solid State Batteries with High Energy Density
PFI-TT:通过等离子体处理制造固体电解质薄膜,以实现高能量密度的固态电池
- 批准号:
2234636 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Relationships Between Synthesis, Structure, Solid-State Electrochemistry, and Phase Stability in Clathrates and Related Materials
合作研究:了解包合物和相关材料的合成、结构、固态电化学和相稳定性之间的关系
- 批准号:
2004514 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
2018 Professional Development Workshop in Ceramics, Columbus, Ohio
2018 年陶瓷专业发展研讨会,俄亥俄州哥伦布
- 批准号:
1833207 - 财政年份:2018
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: Synthesis, Structural Characterization and Electrochemical Studies of Framework Substituted Germanium and Tin Clathrates
合作研究:骨架取代的锗和锡包合物的合成、结构表征和电化学研究
- 批准号:
1710017 - 财政年份:2017
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Synthesis and Electrochemical Studies of Intercalated and Framework Substituted Silicon Clathrates
插层和骨架取代的硅包合物的合成和电化学研究
- 批准号:
1206795 - 财政年份:2012
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
Structure-guided modular phage engineering
结构引导的模块化噬菌体工程
- 批准号:
24K01675 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Risk Assuring Future Structure Critical Systems: Combining 21st Century Science with Engineering Intuition - Renewal
确保未来结构关键系统的风险:将 21 世纪科学与工程直觉相结合 - Renewal
- 批准号:
MR/Y020235/1 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Fellowship
CAREER: Organic Structure and Interphase Engineering for Fast-Charging, High-Temperature and Sustainable Batteries
职业:快速充电、高温和可持续电池的有机结构和相间工程
- 批准号:
2419947 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Structure-based computational engineering of saCas9 PAM requirement
saCas9 PAM 要求的基于结构的计算工程
- 批准号:
10696610 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Band Structure Engineering for Self-Powered Visible Light Driven Photocatalyst
自供电可见光驱动光催化剂的能带结构工程
- 批准号:
23KJ1404 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Engineering grain structure in metals through on-line laser ultrasonic imaging
通过在线激光超声成像工程金属晶粒结构
- 批准号:
2799820 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Studentship
Engineering of real-time biosensors for continuous cortisol monitoring using novel structure switching antibody-DNA conjugates
使用新型结构转换抗体-DNA 缀合物进行连续皮质醇监测的实时生物传感器工程
- 批准号:
545820-2020 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Postgraduate Scholarships - Doctoral
Structure-function relationships in biomaterials for tissue engineering applications
组织工程应用生物材料的结构-功能关系
- 批准号:
RGPIN-2020-05945 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Discovery Grants Program - Individual
Structure-guided engineering to increase respiratory syncytial virus G protein immunogenicity
结构引导工程提高呼吸道合胞病毒G蛋白免疫原性
- 批准号:
10521837 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Structure-guided engineering to increase respiratory syncytial virus G protein immunogenicity
结构引导工程提高呼吸道合胞病毒G蛋白免疫原性
- 批准号:
10624413 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:














{{item.name}}会员




