CAREER: Unlocking "forbidden" optical transitions in nanostructures using light with orbital angular momentum
职业:利用轨道角动量的光解锁纳米结构中“禁止的”光学跃迁
基本信息
- 批准号:1553905
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical abstract: Light with orbital angular momentum (also called "vortex beams" and "twisted light") has generated considerable recent interest because of applications in high-resolution imaging and high-bandwidth communications, but little is known about how twisted light interacts with solid matter. This research explores the use of twisted light to generate new "twisted" quantum electron excitations in nanostructures. Experiments are performed by illuminating cylindrical nanostructures such as rings and dots with light that has tunable orbital angular momentum in order to excite, measure, and control twisted electronic states. The new quantum states accessed in this research could be used in future technologies such as high-bandwidth data storage, computing, and communications. Additionally, this work will be integrated into a new service learning course at the University of Denver in which students will bring these research ideas into neighborhood middle and high schools through hands-on demonstrations.Technical abstract: The objective of this project is to demonstrate and measure unexplored orbital angular momentum (OAM)-activated optical transitions in semiconductor nanostructures. Experiments are performed on quantum rings, dots and wells in order to: 1.) Demonstrate that different orbital states are accessed with twisted light by studying the OAM dependence of transmission spectra; 2.) Measure the dephasing of distorted (OAM-excited) electron and hole wavefunctions with zero spatial overlap, including varying the distribution between center-of-mass and relative-motion angular momentum that is only possible with OAM excitation; and 3.) Control the relaxation of orbital states with OAM-tunable optical pumping. These experiments are enabled by novel multidimensional spectroscopy in which both OAM and wavelength are simultaneously resolved.
非技术性摘要:具有轨道角动量的光(也称为“涡旋光束”和“扭曲光”)由于在高分辨率成像和高带宽通信中的应用而引起了相当大的兴趣,但对扭曲光如何与固体物质相互作用知之甚少。本研究探讨使用扭曲光在奈米结构中产生新的“扭曲”量子电子激发。实验是通过用具有可调轨道角动量的光照射圆柱形纳米结构(如环和点)来进行的,以便激发、测量和控制扭曲的电子态。在这项研究中获得的新量子态可以用于未来的技术,如高带宽数据存储,计算和通信。此外,这项工作将被整合到一个新的服务学习课程在丹佛大学的学生将这些研究的想法到附近的初中和高中通过动手示范。技术摘要:本项目的目标是演示和测量未开发的轨道角动量(OAM)激活的半导体纳米结构的光学跃迁。实验在量子环、量子点和量子威尔斯阱上进行,以便:1.)通过研究透射光谱的OAM依赖性,证明不同的轨道状态被扭曲的光访问; 2)测量具有零空间重叠的畸变(OAM激发的)电子和空穴波函数的退相,包括改变质心和相对运动角动量之间的分布,这仅在OAM激发的情况下是可能的;以及3)利用OAM可调谐光泵浦控制轨道态的弛豫。这些实验是由新的多维光谱,其中OAM和波长同时解决。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detection technique effect on rotational Doppler measurements
- DOI:10.1364/ol.390425
- 发表时间:2020-05-01
- 期刊:
- 影响因子:3.6
- 作者:Anderson, Alexander Q.;Strong, Elizabeth F.;Gopinath, Juliet T.
- 通讯作者:Gopinath, Juliet T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Siemens其他文献
Mark Siemens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Siemens', 18)}}的其他基金
Collaborative Proposal: Multidimensional Tracking of Local Environment-Affected Transport Pathways in Perovskite Solar Cells
合作提案:钙钛矿太阳能电池中受局部环境影响的传输路径的多维跟踪
- 批准号:
1906013 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: OAM photonics: sensing and imaging enabled by orbital angular momentum of light
合作研究:OAM 光子学:通过光的轨道角动量实现传感和成像
- 批准号:
1509733 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Ultrafast Phonon Spectroscopy for Lifetime Measurements of Phonons in 2-D Transitional Metal Dichalcogenides
UNS:合作研究:用于二维过渡金属二硫化物中声子寿命测量的超快声子光谱
- 批准号:
1511199 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
Unlocking the potential of mini-MASS in UK waters
释放英国水域迷你 MASS 的潜力
- 批准号:
10109319 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Launchpad
Unlocking the mechanisms of vibro-acoustic communication in termites
解锁白蚁振动声学通讯机制
- 批准号:
DP240101536 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
Unlocking the sensory secrets of predatory wasps: towards predictive tools for managing wasps' ecosystem services in the Anthropocene
解开掠食性黄蜂的感官秘密:开发用于管理人类世黄蜂生态系统服务的预测工具
- 批准号:
NE/Y001397/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
- 批准号:
2426560 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Unlocking the archive: reuniting Indigenous languages and their communities
解锁档案:重新统一土著语言及其社区
- 批准号:
IM230100544 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Mid-Career Industry Fellowships
Unlocking mine waste potential: carbon sequestration and metals extraction
释放矿山废物潜力:碳封存和金属提取
- 批准号:
LP230100371 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Linkage Projects
Unlocking self-healing bio-concrete through multiscale modelling
通过多尺度建模解锁自愈生物混凝土
- 批准号:
DP240100851 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
Unlocking the ion selectivity of lithium superionic conductor membranes
解锁锂超离子导体膜的离子选择性
- 批准号:
DP240100497 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
Unlocking the potential of poly(ionic liquids) for electrochemical sensing
释放聚(离子液体)电化学传感的潜力
- 批准号:
DP240100014 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
Unlocking the secrets of modular representations
解开模块化表示的秘密
- 批准号:
FL230100256 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Australian Laureate Fellowships