CAREER: In Situ Nanomechanics of High-Performance Anode Materials for Sodium-Ion Batteries
职业:钠离子电池高性能负极材料的原位纳米力学
基本信息
- 批准号:1554393
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) Program project will characterize the nanomechanical and electrochemical interactions in sodium-ion battery electrode materials and develop constitutive models to elucidate the morphological and structural evolution in these materials. As one of the most widespread technologies for energy storage, lithium-ion batteries have been under intense studies over the past two decades. Sodium-ion batteries are being considered as a low-cost alternative because sodium is much more earth abundant and less geographically constrained than lithium. However, the development of advanced sodium-ion batteries has been hindered by a significant unexplored gap in understanding the mechanics of high-performance electrode materials. The proposed research spans several disciplines, including mechanics, materials science, physics, and electrochemistry. The fundamental understanding obtained in this research will make a profound impact on these disciplines. The multidisciplinary work will train undergraduate and graduate students with a broad range of skills and knowledge, and expose them to the complementary research of experimentation and modeling. The research will also involve K-12 teachers and students, particularly females and minorities, through various outreach programs at the Georgia Institute of Technology. The research results will be integrated into the lab modules of a new course on experimental solid mechanics.Energy storage and release of sodium-ion battery electrodes involves a complex set of mechanical and electrochemical processes, including deformation, stress generation, mass transport, phase transformation, and chemical reaction. A fundamental understanding of the mechanics and its strong coupling with other physical phenomena is required to achieve breakthroughs in the sodium-ion battery technology. The research objective of this award is to develop an in situ nanomechanical testing platform for the constitutive characterizations of sodium-ion battery electrode materials. The experimental framework will be employed to investigate the in situ mechanics of sodiated/desodiated germanium and germanium-tin alloys, which are two promising high-performance anode materials for advanced sodium-ion batteries. The space- and time-resolved constitutive behaviors from experimental measurements will be incorporated into a continuum computational model for predictive simulations of the mechanical degradation and morphological evolution in solid electrode materials.
该项目将描述钠离子电池电极材料的纳米力学和电化学相互作用,并开发本构模型来阐明这些材料的形态和结构演化。作为最广泛的储能技术之一,锂离子电池在过去的二十年里受到了密集的研究。钠离子电池被认为是一种低成本的替代品,因为钠的地球资源比锂丰富得多,而且受地理条件的限制也比锂小得多。然而,在理解高性能电极材料的机理方面,一个尚未探索的重大差距阻碍了先进钠离子电池的发展。这项拟议的研究跨越了几个学科,包括力学、材料科学、物理和电化学。本研究取得的基础性认识将对这些学科产生深远的影响。这项多学科的工作将培养具有广泛技能和知识的本科生和研究生,并让他们接触到实验和建模的互补研究。这项研究还将通过佐治亚理工学院的各种推广计划,让K-12年级的教师和学生参与,特别是女性和少数族裔。研究成果将被整合到一门新的固体力学实验课程的实验模块中。钠离子电池电极的储能和释放涉及一系列复杂的机械和电化学过程,包括变形、应力产生、质量传递、相变和化学反应。要实现钠离子电池技术的突破,需要对其机理及其与其他物理现象的强烈耦合有基本的了解。该奖项的研究目标是开发一种用于钠离子电池电极材料本构特性的原位纳米机械测试平台。该实验框架将用于研究钠离子电池中两种很有前途的高性能负极材料--钠化/脱盐锗/脱氧锗锡合金的原位力学性能。来自实验测量的空间和时间分辨本构行为将被合并到一个连续计算模型中,用于预测固体电极材料的力学退化和形态演变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuman Xia其他文献
The influence of pressure on lithium dealloying in solid-state and liquid electrolyte batteries
压力对固态和液态电解质电池中锂合金化的影响
- DOI:
10.1038/s41563-025-02198-7 - 发表时间:
2025-04-03 - 期刊:
- 影响因子:38.500
- 作者:
Congcheng Wang;Yuhgene Liu;Won Joon Jeong;Timothy Chen;Mu Lu;Douglas Lars Nelson;Elif Pınar Alsaç;Sun Geun Yoon;Kelsey Anne Cavallaro;Sazol Das;Diptarka Majumdar;Rajesh Gopalaswamy;Shuman Xia;Matthew T. McDowell - 通讯作者:
Matthew T. McDowell
Phase-augmented digital image correlation for high-accuracy deformation measurement: Theory, validation, and application to constitutive law learning
用于高精度变形测量的相位增强数字图像相关技术:理论、验证及其在本构定律学习中的应用
- DOI:
10.1016/j.jmps.2025.106051 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:6.000
- 作者:
Rahul Danda;Xinxin Wu;Sheng Mao;Yin Zhang;Ting Zhu;Shuman Xia - 通讯作者:
Shuman Xia
Shuman Xia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuman Xia', 18)}}的其他基金
Collaborative Research: Fracture Toughness of Lithium-Ion Battery Electrodes: An Integrative Experimental and Computational Study
合作研究:锂离子电池电极的断裂韧性:综合实验和计算研究
- 批准号:
1300458 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于纳米效应的in situ激光诱导击穿光谱(LIBS)增强特性的研究
- 批准号:21603090
- 批准年份:2016
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
就地(in situ)宇宙成因碳十四(14C)法研究基岩区古地震——以狼山山前断裂为例
- 批准号:41572196
- 批准年份:2015
- 资助金额:80.0 万元
- 项目类别:面上项目
多组分复杂体系in-situ MMCs中有效增强相形成的热力学与动力学机制研究
- 批准号:50671064
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:面上项目
电化学现场(in situ)分子水平信息的检测与理论
- 批准号:29233070
- 批准年份:1992
- 资助金额:50.0 万元
- 项目类别:重点项目
相似海外基金
Diffractometer for time-resolved in-situ high temperature powder diffraction and X-ray reflectivity
用于时间分辨原位高温粉末衍射和 X 射线反射率的衍射仪
- 批准号:
530760073 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Major Research Instrumentation
カダバーを用いた股関節唇のin situ force計測による関節唇損傷メカニズムの解明
使用尸体对髋关节盂唇进行原位力测量来阐明盂唇损伤机制
- 批准号:
24K14277 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319097 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
- 批准号:
2327349 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Rapid In-situ Forming Gel for Local Gene Delivery
I-Corps:快速原位形成凝胶用于局部基因传递的转化潜力
- 批准号:
2410778 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
階層性多孔構造形成過程のTEM in-situ観察で解明するガラスのミクロ構造
通过 TEM 原位观察分级多孔结构形成过程阐明玻璃微观结构
- 批准号:
23K23439 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
細胞内核磁気共鳴法を用いたin situ環境下でのRac1の動的構造制御機構の解明
利用细胞内核磁共振原位阐明 Rac1 的动态结构控制机制
- 批准号:
24K18077 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
2Dマテリアルの転送機構の微視的機構を解明するin-situ TEM観察
原位 TEM 观察阐明二维材料转移的微观机制
- 批准号:
24K07286 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding the mechanosynthesis mechanism of solid-state electrolytes via in-situ synchrotron XRD
通过原位同步加速器 XRD 了解固态电解质的机械合成机制
- 批准号:
24K17553 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




