CAREER: Geometrical Frustration in Spin Orbit Systems

职业:自旋轨道系统中的几何挫败

基本信息

  • 批准号:
    1554891
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-02-01 至 2022-01-31
  • 项目状态:
    已结题

项目摘要

Non-Technical Abstract:The behavior of electrons in solids can often be understood in analogy with that of free electrons, but with the electronic mass replaced by an effective mass determined by the detailed atomic and structural properties of the solid. Deviations from this simple behavior due to interactions between electrons or additional degrees of freedom of the individual electrons are at the heart of some of the most fundamentally important electronic phenomena. Examples range from superconductivity to magnetism and include material behavior of broad technological relevance. This CAREER project studies electronic materials that realize new types of unconventional behavior by combining two typically disparate phenomena: strong coupling of the spin and orbital degrees of freedom of individual electrons and low connectivity (frustrated) crystalline lattices that enhance interactions between electrons. The project experimentally explores this combination via synthesis, characterization, and analysis of such materials towards new interacting states to forge the building blocks of the next generation of electronics. The role of materials synthesis in this research dovetails with its educational efforts to improve the status of education in crystal growth in the United States. This involves both crystal growth training at the principal investigator's institution for a wide range of students and researchers and exchange activities with internationally recognized centers for crystal growth. These educational efforts also include K-12 collaborations with science enrichment activities that feature direct interaction between elementary school students and educators with the principle investigator and the research team. These efforts are designed to educate, engage, and inspire these students for future careers in science and technology. Technical Abstract:This CAREER project studies electronic materials that combine strong spin-orbit coupling and geometrical frustration. The project develops such electronic materials tailored to realize tunable spin-orbit strength via elemental composition and geometrical frustration by using low connectivity lattices. Probing the interplay of spin-orbit and frustration is expected to elucidate the manner in which these effects act in concert; this activity aims at developing this understanding towards the ultimate goal of a new paradigm for interacting electronic states. New topological, magnetic, and electronic properties of these systems are evaluated as drivers for functionalities in the next generation of quantum electronics. The methods used are materials synthesis, electrical and magnetic characterization, and collaborative efforts using optical spectroscopy, theory, neutron scattering, and microwave techniques. The combination of materials science and physics in both the research and educational aspects of the project aims to overcome the cultural barrier that is perceived to exist between these fields in the United States. The research itself is enabled by the interplay of these two fields. The education goals are targeted activities in crystal growth education and training at the principle investigator's institution for a wide range of students and researchers and more broadly to the greater scientific community through science outreach projects with elementary school students and international exchanges. This is directly targeted at improving the research and education infrastructure for solid state physics and science in general in the United States.
非技术摘要:电子在固体中的行为通常可以被理解为自由电子的行为,但电子质量被由固体的详细原子和结构属性确定的有效质量所代替。由于电子之间的相互作用或单个电子的额外自由度而导致的对这一简单行为的偏离是一些最基本的重要电子现象的核心。例子范围从超导到磁性,包括与广泛技术相关的材料行为。这个职业项目研究的是通过结合两种典型的不同现象来实现新型非常规行为的电子材料:单个电子的自旋和轨道自由度的强耦合,以及增强电子之间相互作用的低连通性(受挫)晶体晶格。该项目通过对这些材料的合成、表征和分析,对这种结合进行了实验性的探索,以获得新的相互作用状态,以打造下一代电子产品的基础。材料合成在这项研究中的作用与其改善美国晶体生长教育地位的教育努力相吻合。这包括在首席研究员机构为广泛的学生和研究人员进行晶体生长培训,以及与国际公认的晶体生长中心进行交流活动。这些教育努力还包括K-12与科学丰富活动的合作,这些活动的特点是小学生和教育工作者与首席调查员和研究小组直接互动。这些努力旨在教育、参与和激励这些学生未来在科学和技术领域的职业生涯。技术摘要:这个职业项目研究的是结合了强自旋-轨道耦合和几何受挫的电子材料。该项目开发了这样的电子材料,通过使用低连接性晶格,通过元素组成和几何受挫来实现可调的自旋轨道强度。探索自旋-轨道和受挫的相互作用有望阐明这些效应协同作用的方式;这项活动旨在将这一理解发展到一个新的相互作用电子态范式的最终目标。这些系统的新的拓扑、磁学和电学性质被评估为下一代量子电子学功能的驱动因素。所使用的方法包括材料合成、电学和磁学表征,以及使用光谱学、理论、中子散射和微波技术的合作努力。该项目在研究和教育方面将材料科学和物理学结合在一起,旨在克服美国这些领域之间存在的文化障碍。这两个领域的相互作用使研究本身成为可能。教育目标是在首席研究员机构为广泛的学生和研究人员开展晶体生长教育和培训方面的有针对性的活动,并通过与小学生的科学外联项目和国际交流更广泛地向更广泛的科学界提供培训。它的直接目标是改善美国的固态物理和科学的研究和教育基础设施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Checkelsky其他文献

Planar Schottky tunneling spectroscopy of antiferromagnetic kagome metal FeSn
反铁磁kagome金属FeSn的平面肖特基隧道光谱
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minyong Han;Hisashi Inoue;Shiang Fang;Caolan John;Linda Ye;Mun K. Chan;David E Graf;Takehito Suzuki;Madhav Prasad Ghimire;Won Joon Cho;Efthimios Kaxiras;Joseph Checkelsky
  • 通讯作者:
    Joseph Checkelsky
Dehn twist-crosscap slide presentations for involutions on non-orientable surfaces of genera up to 5
Dehn 扭转交叉盖幻灯片演示,用于最多 5 个属的不可定向表面上的对合
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minyong Han;Hisashi Inoue;Shiang Fang;Caolan John;Linda Ye;Mun K. Chan;David E Graf;Takehito Suzuki;Madhav Prasad Ghimire;Won Joon Cho;Efthimios Kaxiras;Joseph Checkelsky;大森源城
  • 通讯作者:
    大森源城
レーザー励起された磁性体の過渡光学応答第一原理計算
激光激发磁性材料瞬态光学响应的​​第一性原理计算
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minyong Han;Hisashi Inoue;Shiang Fang;Caolan John;Linda Ye;Mun K. Chan;David E Graf;Takehito Suzuki;Madhav Prasad Ghimire;Won Joon Cho;Efthimios Kaxiras;Joseph Checkelsky;佐藤駿丞
  • 通讯作者:
    佐藤駿丞
メトリックグラフ上の熱拡散方程式の状態推定と状態制御
度量图上热扩散方程的状态估计与状态控制
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minyong Han;Hisashi Inoue;Shiang Fang;Caolan John;Linda Ye;Mun K. Chan;David E Graf;Takehito Suzuki;Madhav Prasad Ghimire;Won Joon Cho;Efthimios Kaxiras;Joseph Checkelsky;大森源城;岩崎悟
  • 通讯作者:
    岩崎悟
量子細線・レイヤーによる3次元トポロジカル相の構成
量子线/层的 3D 拓扑相结构
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minyong Han;Hisashi Inoue;Shiang Fang;Caolan John;Linda Ye;Mun K. Chan;David E Graf;Takehito Suzuki;Madhav Prasad Ghimire;Won Joon Cho;Efthimios Kaxiras;Joseph Checkelsky;佐藤駿丞;藤陽平
  • 通讯作者:
    藤陽平

Joseph Checkelsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Checkelsky', 18)}}的其他基金

NSF-BSF: Development and Study of Lattice-Derived Flat Band States
NSF-BSF:晶格衍生平带态的发展和研究
  • 批准号:
    2104964
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Convergence QL: NSF/DOE Quantum Science Summer School
Convergence QL:NSF/DOE 量子科学暑期学校
  • 批准号:
    1743059
  • 财政年份:
    2017
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似海外基金

Systematic investigation of the unconventional anomalous Hall effect on the rare-earth compounds with geometrical frustration
几何挫败稀土化合物非常规反常霍尔效应的系统研究
  • 批准号:
    20K03861
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elastic effects in strongly correlated molecule-based systems with geometrical frustration (A06+)
具有几何挫败性的强相关分子系统中的弹性效应 (A06)
  • 批准号:
    444814233
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    CRC/Transregios
Ultrasonic study on the physical properties of multipoles due to structural chirality and/or geometrical frustration
由于结构手性和/或几何挫败而对多极物理特性进行超声研究
  • 批准号:
    19K03719
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel quantum magnetism and ferroelectricity induced by geometrical frustration
由几何挫败引起的新型量子磁性和铁电性
  • 批准号:
    16K05425
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of charge glass induced by geometrical frustration
几何挫败引起的带电玻璃研究
  • 批准号:
    15H05459
  • 财政年份:
    2015
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Geometrical Frustration and the Anomalous Magnetization of (CuCl)LaNb2O7
(CuCl)LaNb2O7 的几何挫败和反常磁化强度
  • 批准号:
    410589-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 55万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Geometrical Frustration and the Anomalous Magnetization of (CuCl)LaNb2O7
(CuCl)LaNb2O7 的几何挫败和反常磁化强度
  • 批准号:
    410589-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 55万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Enhancement of magnetism and magneto-electric coupling in multiferroic structures with geometrical frustration caused by high tetragonality phases
具有高四方相引起的几何挫败的多铁性结构中磁性和磁电耦合的增强
  • 批准号:
    24560007
  • 财政年份:
    2012
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometrical Frustration and the Anomalous Magnetization of (CuCl)LaNb2O7
(CuCl)LaNb2O7 的几何挫败和反常磁化强度
  • 批准号:
    410589-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 55万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Strong Non-geometrical Frustration Effect in Neodymium Compounds
钕化合物中强的非几何挫败效应
  • 批准号:
    23740265
  • 财政年份:
    2011
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了