CAREER:Revealing the Complex Fluid Dynamics of Conventional Liquids Using Vibrating Nanoparticles
职业:利用振动纳米颗粒揭示传统液体的复杂流体动力学
基本信息
- 批准号:1554895
- 负责人:
- 金额:$ 65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical abstractScientists have developed an extensive understanding of how conventional liquids, such as water, behave on ordinary time and length scales, and have also developed an understanding of the individual molecules that make up the liquids. However, the behavior of liquids remains poorly understood between these two extremes, impeding the development of technologies such as molecular sensors, and limiting scientific understanding of the function of biological molecules. The main reason for this gap in knowledge has been the lack of experimental methods to probe the short length scales and fast time scales involved. The principal investigator has recently developed a novel method to access this regime directly, using short laser pulses to monitor the vibrations of nanometer-scale metal particles floating in the liquids. This project applies this experimental method, together with rigorous theoretical models, to develop a fundamental understanding of the unusual and complex properties of ordinary liquids at nanometer length scales and picosecond time scales. The research is integrated with educational activities that have the overall objective of improving the recruitment, retention, and success of underrepresented minorities and transfer students in the physical sciences. This involves three interconnected activities: (1) outreach to incoming minority and transfer physics students; (2) involvement of undergraduate students in the research project; and (3) a rebuilding of the Modern Physics Laboratory course to involve modern educational approaches and contemporary physics topics.Technical abstractThe objective of this project is to provide a quantitative understanding of the non-Newtonian effects that arise in conventional liquids, such as water, when they interact with a rapidly moving solid nanostructure. Simplifying assumptions that are used for fluid-dynamics problems at larger scales break down at the nanometer scale. In particular, the common assumption that conventional liquids have a purely viscous response no longer holds, because the characteristic times for the motion of nanoscale objects are comparable to molecular relaxation times in the liquids. This project investigates this complex response experimentally using a method, recently developed by the principal investigator, based on ultrafast laser spectroscopy of vibrating metal nanoparticles suspended in the liquids. Measurements of the gigahertz-scale mechanical vibrations of metal nanoparticles in viscous liquids are used to obtain a quantitative, phenomenological description of the linear, shear viscoelastic response of conventional liquids. Extensions of the experiments access more complex aspects of the viscoelastic response, including compressibility, terahertz-frequency response, and nonlinear viscoelasticity. The experimental results are compared to molecular-dynamics simulations in order to explain how the continuum viscoelastic response emerges from microscopic interactions. By providing a link between microscopic, molecular-level descriptions and bulk, fluid-dynamical descriptions of liquid properties, the project addresses the grand challenge of understanding how continuum behavior in liquids emerges from microscopic interactions among the molecules that make up the liquid.
非技术摘要科学家们已经对水等常规液体在普通时间和长度尺度上的行为有了广泛的了解,并且对构成液体的单个分子也有了了解。 然而,在这两个极端之间,对液体的行为仍然知之甚少,阻碍了分子传感器等技术的发展,并限制了对生物分子功能的科学理解。这种知识差距的主要原因是缺乏实验方法来探索所涉及的短长度尺度和快时间尺度。 首席研究员最近开发了一种新的方法来直接访问这个政权,使用短激光脉冲来监测漂浮在液体中的纳米级金属颗粒的振动。 该项目应用这种实验方法,结合严格的理论模型,对普通液体在纳米长度尺度和皮秒时间尺度上的不寻常和复杂性质进行了基本了解。 该研究与教育活动相结合,其总体目标是提高物理科学中代表性不足的少数民族和转学生的招聘,保留和成功。 这涉及三个相互关联的活动:(1)接触即将入学的少数民族和转学物理学生;(2)本科生参与研究项目;(3)现代物理实验课程的重建,包括现代教育方法和当代物理主题。当传统液体(如水)与快速移动的固体纳米结构相互作用时,会产生牛顿效应。用于大尺度流体动力学问题的简化假设在纳米尺度上就失效了。 特别是,常规液体具有纯粘性响应的常见假设不再成立,因为纳米级物体运动的特征时间与液体中的分子弛豫时间相当。该项目使用主要研究者最近开发的一种方法,基于悬浮在液体中的振动金属纳米颗粒的超快激光光谱学,通过实验研究了这种复杂的响应。 在粘性液体中的金属纳米粒子的千兆赫兹尺度的机械振动的测量被用来获得一个定量的,传统的液体的线性,剪切粘弹性响应的唯象描述。 扩展的实验访问更复杂的方面的粘弹性响应,包括压缩性,太赫兹频率响应,和非线性粘弹性。 实验结果进行了比较,以解释如何出现从微观相互作用的连续粘弹性响应的分子动力学模拟。通过提供微观,分子水平的描述和散装,液体性质的流体动力学描述之间的联系,该项目解决了理解液体中的连续行为如何从组成液体的分子之间的微观相互作用中出现的巨大挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Pelton其他文献
Electrically Tunable Single Polaritonic Quantum Dot at Room Temperature.
室温下电可调单极化量子点。
- DOI:
10.1103/physrevlett.132.133001 - 发表时间:
2024 - 期刊:
- 影响因子:8.6
- 作者:
Hyeongwoo Lee;Benjamin G Whetten;Byongyeon Kim;Ju Young Woo;Y. Koo;Jinhyuk Bae;Mingu Kang;Taeyoung Moon;Huitae Joo;Sohee Jeong;Jaehoon Lim;Alexander L. Efros;Markus B. Raschke;Matthew Pelton;Kyoung - 通讯作者:
Kyoung
Contemporary relationship between medical expenditures and quality of life among adults with epilepsy in the United States
- DOI:
10.1016/j.yebeh.2020.107430 - 发表时间:
2020-11-01 - 期刊:
- 影响因子:
- 作者:
Alain Lekoubou;Matthew Pelton;Kinfe G. Bishu;Bruce Ovbiagele - 通讯作者:
Bruce Ovbiagele
Modified spontaneous emission in nanophotonic structures
纳米光子结构中的修饰自发发射
- DOI:
10.1038/nphoton.2015.103 - 发表时间:
2015-06-30 - 期刊:
- 影响因子:32.900
- 作者:
Matthew Pelton - 通讯作者:
Matthew Pelton
THU-390 - Demographics, outcomes, and costs of Wilson’s disease hospitalizations: a nationwide cohort study
- DOI:
10.1016/s0168-8278(23)03082-9 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:
- 作者:
Ankoor Patel;Matthew Pelton;Carlos Minacapelli;Carolyn Catalano;Vinod Rustgi - 通讯作者:
Vinod Rustgi
COMPARING COMORBIDITY BURDEN IN CLINICAL TRIAL POPULATIONS VERSUS REAL WORLD COHORTS MAY AID CLINICAL TRANSLATION OF RESEARCH FINDINGS
- DOI:
10.1016/s0735-1097(22)00999-8 - 发表时间:
2022-03-08 - 期刊:
- 影响因子:
- 作者:
Simran Grewal;Matthew Pelton;Caroline Eisele;Peter Malamas;Mohammed Ruzieh;Gerald V. Naccarelli;Andrew J. Foy - 通讯作者:
Andrew J. Foy
Matthew Pelton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Pelton', 18)}}的其他基金
Assemblies of Metal Nanoparticles and Single Quantum Dots with Low-Power, Ultrafast Nonlinear Optical Response
具有低功率、超快非线性光学响应的金属纳米颗粒和单量子点组件
- 批准号:
1905135 - 财政年份:2019
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
相似海外基金
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Revealing the drivers of galaxy formation in the densest cosmic environments
揭示最密集的宇宙环境中星系形成的驱动因素
- 批准号:
MR/X035166/1 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Fellowship
Revealing the regulatory mechanisms of endosomal cargo transporters
揭示内体货物转运蛋白的调控机制
- 批准号:
2337495 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
- 批准号:
2320259 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Revealing complexity of hyaluronan-protein interactions: novel tools and insights
揭示透明质酸-蛋白质相互作用的复杂性:新颖的工具和见解
- 批准号:
BB/X007278/1 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Research Grant
REVEALing Signatures of Habitable Worlds Hidden by Stellar Activity
揭示恒星活动隐藏的宜居世界的特征
- 批准号:
EP/Z000181/1 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Research Grant
From Theory to Thrust: Revealing the Role of Actuation and Sensing in How Undulatory Swimmers Change Speed
从理论到推力:揭示驱动和传感在波动游泳者如何改变速度中的作用
- 批准号:
2345913 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
- 批准号:
2320260 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Revealing the Nature of Dark Matter with JWST and Euclid
通过 JWST 和欧几里得揭示暗物质的本质
- 批准号:
ST/X003086/1 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Fellowship
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344214 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Standard Grant