CAREER: Resolving Past Mysteries, Preparing for Future Discoveries: The Exciting Opportunities of the Short-Baseline Neutrino Physics Program at Fermilab

职业:解开过去的谜团,为未来的发现做好准备:费米实验室短基线中微子物理项目的令人兴奋的机会

基本信息

  • 批准号:
    1555090
  • 负责人:
  • 金额:
    $ 82.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

One of the major intellectual achievements of the 20th century was the development of the Standard Model (SM) of particle physics. This model succeeded in classifying all of the elementary particles known at the time into a hierarchy of groups having similar quantum properties. The validity of this model to date was recently confirmed by the discovery of the Higgs boson at the Large Hadron Collider at CERN. However, the Standard Model as it currently exists leaves open many questions about the universe, including such fundamental questions as to why the Higgs mass has the value it has and why there is no antimatter in the universe. One of the primary areas to search for answers to these and other open questions about the universe, how it came to be and why it is the way it is, is to focus on a study of the properties of neutrinos and to use what we know and can learn about neutrinos as probes of science beyond the Standard Model. Neutrinos are those elementary particles that interact with practically nothing else in the universe. They have no electric charge and were once thought to be massless. Like other elementary particles, they were believed to have an antimatter counterpart, the antineutrino. Moreover, the Standard Model predicted that there were actually three different kinds of neutrinos that were distinguishable through the different interactions that they did undergo whenever there was an interaction. But recent measurements have totally changed our picture of neutrinos. We now know that neutrinos do have a mass and because they do, they can actually change from one type to another. Detailed measurements of these changes, along with other current neutrino experiments, form one of the most promising ways to probe for new physics beyond the Standard Model. There have been hints in various experiments of new types of neutrinos, and clarifying these "hints" is one of the main thrusts of this project. The work itself will be the further development of the Liquid Argon Time Projection Chamber (LArTPC) technology for use in neutrino physics as part of the Short-Baseline Near Detector (SBND) experiment and the MicroBooNE experiment. These neutrino experiments are all located at the Fermi National Accelerator Laboratory (FNAL). The MicroBooNE experiment should significantly increase the physics reach toward answering the important question of whether predicted "sterile" neutrinos exist and resolving the anomalies in recent neutrino experiments. In addition to the contribution to the fundamental neutrino physics mentioned above, this research will serve as an invaluable proving ground for the calibration, reconstruction and analysis techniques that will be needed to make future experiments, such as the planned DUNE experiment, a success.The Broader Impact of the project involves bringing current techniques in high energy physics to the broader local community. The south side neighborhoods surrounding the UChicago campus are largely populated with underrepresented groups in STEM fields, and this project aims to build a program within the Department of Physics that connects university students with local elementary and middle school children to introduce them to concepts in physics with the aid of fun, interactive demonstrations.
20 世纪的主要智力成就之一是粒子物理学标准模型 (SM) 的发展。该模型成功地将当时已知的所有基本粒子分类为具有相似量子特性的群的层次结构。最近,欧洲核子研究中心大型强子对撞机发现的希格斯玻色子证实了该模型迄今为止的有效性。然而,目前存在的标准模型留下了许多关于宇宙的问题,包括为什么希格斯质量具有它所具有的价值以及为什么宇宙中没有反物质等基本问题。寻找这些和其他有关宇宙的开放性问题(宇宙是如何形成以及为何是现在这个样子)的答案的主要领域之一是专注于中微子的性质研究,并利用我们所知道和可以了解的中微子作为标准模型之外的科学探针。中微子是那些几乎不与宇宙中其他任何物质相互作用的基本粒子。它们不带电荷,曾经被认为没有质量。与其他基本粒子一样,它们被认为具有反物质对应物,即反中微子。此外,标准模型预测实际上存在三种不同类型的中微子,可以通过它们在相互作用时所经历的不同相互作用来区分。但最近的测量完全改变了我们对中微子的看法。我们现在知道中微子确实有质量,并且因为有质量,它们实际上可以从一种类型转变为另一种类型。对这些变化的详细测量以及当前的其他中微子实验,构成了探索标准模型之外的新物理学最有希望的方法之一。新型中微子的各种实验中已经出现了一些线索,而澄清这些“线索”是该项目的主要目标之一。这项工作本身将是液氩时间投影室 (LArTPC) 技术的进一步开发,用于中微子物理,作为短基线近探测器 (SBND) 实验和 MicroBooNE 实验的一部分。这些中微子实验均位于费米国家加速器实验室(FNAL)。 MicroBooNE 实验将显着扩大物理学范围,以回答预测的“惰性”中微子是否存在这一重要问题,并解决最近中微子实验中的异常现象。除了上述对基础中微子物理学的贡献外,这项研究还将成为校准、重建和分析技术的宝贵试验场,这些技术是未来实验(例如计划中的 DUNE 实验)取得成功所需的。该项目的更广泛影响包括将高能物理学的当前技术带到更广泛的当地社区。芝加哥大学校园周围的南侧社区主要居住着 STEM 领域代表性不足的群体,该项目旨在在物理系内建立一个项目,将大学生与当地中小学生联系起来,通过有趣的互动演示向他们介绍物理概念。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Schmitz其他文献

The broadband microwave spectra of the monoterpenoids thymol and carvacrol: conformational landscape and internal dynamics.
单萜百里香酚和香芹酚的宽带微波光谱:构象景观和内部动力学。
  • DOI:
    10.1063/1.4887337
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Schmitz;V. Shubert;B. Giuliano;M. Schnell;M. Schnell
  • 通讯作者:
    M. Schnell
Localization of network service performance degradation in multi-tenant networks
  • DOI:
    10.1016/j.comnet.2019.107050
  • 发表时间:
    2020-02-26
  • 期刊:
  • 影响因子:
  • 作者:
    Pavle Vuletić;Bartosz Bosak;Marinos Dimolianis;Pascal Mérindol;David Schmitz;Henrik Wessing
  • 通讯作者:
    Henrik Wessing
On the postulation of lines and a fat line
关于线条和粗线的假设
  • DOI:
    10.1016/j.jsc.2018.06.010
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Bauer;S. Rocco;David Schmitz;T. Szemberg;J. Szpond
  • 通讯作者:
    J. Szpond
Continuous inverse ambiguous functions on Lie groups
  • DOI:
    10.1007/s00010-024-01131-8
  • 发表时间:
    2024-10-22
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    David Schmitz;Sadman Rahman;Anthony Kindness
  • 通讯作者:
    Anthony Kindness
Zariski chambers on surfaces of high Picard number
高皮卡德数表面上的 Zariski 室
  • DOI:
    10.1112/s1461157012001040
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Bauer;David Schmitz
  • 通讯作者:
    David Schmitz

David Schmitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Schmitz', 18)}}的其他基金

Accelerator-Based Experimental Neutrino Physics
基于加速器的实验中微子物理
  • 批准号:
    1404535
  • 财政年份:
    2014
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Resolving deep animal phylogeny with irreversible and unrepeatable genomic changes
通过不可逆和不可重复的基因组变化解决深层动物系统发育
  • 批准号:
    EP/Y023668/1
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Fellowship
CAREER: RACING -- Resolving the Activity Cycle In the Nearest Galaxies
职业:赛车——解决最近星系的活动周期问题
  • 批准号:
    2339670
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341426
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341424
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
  • 批准号:
    2414424
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
Scale Resolving Simulations for Innovations in Turbomachinery Design (SciFi Turbo)
涡轮机械设计创新的尺度解析模拟 (SciFi Turbo)
  • 批准号:
    10111062
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    EU-Funded
Resolving the Role of Brain Lymphatic Endothelial Cells in Sleep Dependent Brain Clearance
解决脑淋巴内皮细胞在睡眠依赖性脑清除中的作用
  • 批准号:
    BB/Y001206/1
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Research Grant
Thermospheric Circulation Using Mesoscale-Resolving Whole Atmosphere Model and Satellite Observations
使用中尺度解析整个大气模型和卫星观测的热层环流
  • 批准号:
    2409172
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: Resolving and scaling litter decomposition controls from leaf to landscape in North American drylands
合作研究:MRA:解决和扩展北美旱地从树叶到景观的垃圾分解控制
  • 批准号:
    2307195
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
CAREER: Turbulence-Resolving Integral Simulations for Boundary Layer Flows
职业:边界层流的湍流求解积分模拟
  • 批准号:
    2340121
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了