Collaborative Research: Inference Methods for Machine Learning and High-Dimensional Data in Policy Evaluation and Structural Economic Models

合作研究:政策评估和结构经济模型中机器学习和高维数据的推理方法

基本信息

  • 批准号:
    1558636
  • 负责人:
  • 金额:
    $ 19.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-15 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

Much of empirical economics focuses on estimating and drawing credible inferences about the causal effects of economic policies or about features of underlying economic models such as elasticities. The type of data that researchers have at their disposal to aid in this task is increasingly rich and complex. While these increased data resources open up many new opportunities, they also pose additional challenges as researchers must employ data-reduction techniques - for example, techniques from the analysis of "big data" - to make analyzing complex data and models feasible and informative, and naïve application of such techniques may render conclusions drawn about economic effects invalid. This research project will establish a general, formal framework to provide guidance about construction of estimation and inference devices coupled with appropriate use of tools from "big data" or data-mining that will deliver reliable conclusions about economic objects of interest. The proposed research will present the methods and corresponding theoretic guarantees to cover a variety of situations encountered in empirical research in economics and the social sciences, offer empirical applications, and provide usable software in statistical packages popular within the social sciences. The theoretical and empirical work will thus help bridge the gap between social science practice and "big data", and will provide methods that will enhance the credibility of the drawn scientific conclusions. The proposed research will provide bridges between high-dimensional statistical modeling and applied social science research. Integrating high-dimensional methods with economically relevant modeling frameworks and targets is important in providing researchers tools which can be used to analyze modern, complex data and provide reliable inferential statements about the objects of interest. The proposed research will advance the theory of inference following regularization which is a key element to inference in modern, large data sets. The main goal of this research project is to generalize available results about inference for a low-dimensional target parameter of interest by providing an encompassing framework that will include interesting nonlinear models and estimation procedures such as maximum likelihood and generalized method of moments. We will also provide an extension to cover cases where the target of interest is function valued, such as when interest is in a set quantile treatment effects across a range of quantile indices. This advancement will expand the frontier for applications of high-dimensional methods in applications where inference about sets of model parameters is the goal. This expansion is useful even in low-dimensional models and is likely to become crucial as large, complicated data sets become more readily available. In addition to providing theoretical results, the research aims to provide illustrative empirical examples and software in both R and Stata for application of these methods.
许多实证经济学的重点是对经济政策的因果效应或基本经济模型(如弹性)的特征进行估计和得出可信的推论。研究人员用来帮助完成这项任务的数据类型越来越丰富和复杂。虽然这些增加的数据资源开辟了许多新的机会,但它们也带来了额外的挑战,因为研究人员必须采用数据简化技术- -例如来自“大数据”分析的技术- -使分析复杂数据和模型变得可行并提供信息,并且naïve应用这些技术可能使关于经济影响的结论无效。该研究项目将建立一个通用的、正式的框架,为估计和推理设备的构建提供指导,并适当使用来自“大数据”或数据挖掘的工具,从而提供有关感兴趣的经济对象的可靠结论。本研究将提供方法和相应的理论保证,以涵盖经济学和社会科学实证研究中遇到的各种情况,提供实证应用,并在社会科学中流行的统计软件包中提供可用的软件。因此,理论和实证工作将有助于弥合社会科学实践与“大数据”之间的差距,并将提供提高所得出的科学结论可信度的方法。本研究将在高维统计模型与应用社会科学研究之间搭建桥梁。将高维方法与经济相关的建模框架和目标相结合,对于为研究人员提供可用于分析现代复杂数据并提供有关感兴趣对象的可靠推理陈述的工具非常重要。提出的研究将推进正则化推理理论,这是现代大型数据集推理的关键要素。本研究项目的主要目标是通过提供一个包含有趣的非线性模型和估计程序(如最大似然和广义矩法)的框架,概括有关低维目标参数推理的现有结果。我们还将提供一个扩展,以涵盖感兴趣的目标是函数值的情况,例如当感兴趣的是跨一系列分位数索引的一组分位数处理效果时。这一进步将扩大高维方法在以模型参数集推断为目标的应用中的应用。这种扩展即使在低维模型中也很有用,而且随着大型、复杂的数据集变得更容易获得,这种扩展可能变得至关重要。除了提供理论结果外,本研究旨在为这些方法的应用提供说明性的实证示例和R和Stata中的软件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christian Hansen其他文献

Is this the vReal Life? Manipulating Visual Fidelity of Immersive Environments for Medical Task Simulation
这就是vReal Life吗?
Targeted Undersmoothing
有针对性的欠平滑
High-Dimensional Econometrics and Generalized GMM
高维计量经济学和广义 GMM
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Belloni;V. Chernozhukov;D. Chetverikov;Christian Hansen;Kengo Kato
  • 通讯作者:
    Kengo Kato
Brain-computer interfaces: from research to consumer products
  • DOI:
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christian Hansen
  • 通讯作者:
    Christian Hansen
Prequalification of genome-based newborn screening for severe childhood genetic diseases through federated training based on purifying hyperselection
  • DOI:
    10.1016/j.ajhg.2024.10.021
  • 发表时间:
    2024-12-05
  • 期刊:
  • 影响因子:
  • 作者:
    Stephen F. Kingsmore;Meredith Wright;Laurie D. Smith;Yupu Liang;William R. Mowrey;Liana Protopsaltis;Matthew Bainbridge;Mei Baker;Sergey Batalov;Eric Blincow;Bryant Cao;Sara Caylor;Christina Chambers;Katarzyna Ellsworth;Annette Feigenbaum;Erwin Frise;Lucia Guidugli;Kevin P. Hall;Christian Hansen;Mark Kiel
  • 通讯作者:
    Mark Kiel

Christian Hansen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christian Hansen', 18)}}的其他基金

Improving uptake of delivery care services in rural Tanzania through demand creation, ambulance transport and quality of care: a feasibility study
通过创造需求、救护车运输和护理质量提高坦桑尼亚农村地区分娩护理服务的采用:可行性研究
  • 批准号:
    MR/N028481/1
  • 财政年份:
    2016
  • 资助金额:
    $ 19.15万
  • 项目类别:
    Research Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 19.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 19.15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
  • 批准号:
    2311249
  • 财政年份:
    2023
  • 资助金额:
    $ 19.15万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 19.15万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: MEDIUM: General and Scalable Pluggable Type Inference
合作研究:SHF:MEDIUM:通用且可扩展的可插入类型推理
  • 批准号:
    2312263
  • 财政年份:
    2023
  • 资助金额:
    $ 19.15万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 19.15万
  • 项目类别:
    Standard Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324490
  • 财政年份:
    2023
  • 资助金额:
    $ 19.15万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324489
  • 财政年份:
    2023
  • 资助金额:
    $ 19.15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
  • 批准号:
    2311251
  • 财政年份:
    2023
  • 资助金额:
    $ 19.15万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312502
  • 财政年份:
    2023
  • 资助金额:
    $ 19.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了