Flexible and Robust Walking in Uneven Terrain

在崎岖不平的地形中灵活而稳健地行走

基本信息

项目摘要

There have been remarkable advances in the technology of biped robots, enabling the most advanced machines to walk and run at relatively high speeds. Still, current bipeds are not capable of handling the large disturbances that would occur during the practical use of such machines and still have severe limitations in the generation of walking patterns in complex environments. Currently, these limitations appear to be more problematic than the fact that robots can not walk or run as fast in ideal laboratory conditions as humans can, since a central argument for legged locomotion is the supposed superiority to wheeled or tracked vehicles in rough terrain. Therefore, the goal of this project is to research methods for improving the robustness and flexibility of biped robots. We view this research as a first step towards using biped robots outside tightly controlled laboratory conditions and proving the inherent superiority of legged locomotion in rough terrain. The project will include theoretical studies, numerical simulations and walking experiments using the biped robot Lola developed during the DFG project „Natur und Technik intelligenten Laufens“.The term „flexiblility“ in the title of the project signifies the capacity of the control system to actually use a large portion of the robot‘s physical capabilities. This is important, e.g., when stepping over or onto complex, previously unknown obstacles or when walking with very large steps. By term ‘robustness‘ we mean the ability of the robot to recover from very large disturbances, due to external forces or errors in the environment model. This can only be achieved by large modifications of the originally planned motion of the system. This proposal is based on two hypotheses: 1. Real-time planning of stable locomotion with singularity and collision avoidance is simplified and sped up by using a time-varying definition of task-space and a predictive inverse kinematics algorithm.2. Robustness against disturbances is increased by reactive re-planning of walking patterns and adaptive robot and environment models. The methods developed during this project are easily transferable to similar biped robots and, to a large extent, more conventional robot manipulators. Specifically, we are planning to use the methods developed in this project for motion generation of agricultural robots in cluttered, unknown environments at a later time.
两足机器人的技术已经取得了显著的进步,使最先进的机器能够以相对较高的速度行走和奔跑。尽管如此,目前的两足动物还不能处理在实际使用这类机器时会出现的大干扰,并且在复杂环境中生成行走模式方面仍然存在严重限制。目前,这些限制似乎比机器人不能在理想的实验室条件下行走或跑得像人类一样快的事实更成问题,因为腿部行走的一个核心论点是,在崎岖的地形上,轮式或履带式车辆被认为具有优势。因此,本项目的目标是研究提高双足机器人健壮性和灵活性的方法。我们认为这项研究是在严格控制的实验室条件下使用两足机器人的第一步,并证明了在崎岖地形中行走的固有优势。该项目将包括理论研究、数值模拟和行走实验,使用DFG项目“Natur and Technik Intelligence enten Laufens”期间开发的两足机器人Lola。项目标题中的“灵活性”一词表示控制系统实际使用机器人大部分物理能力的能力。这一点很重要,例如,当跨过或踏上复杂的、以前未知的障碍物时,或者当用非常大的步子行走时。我们所说的“健壮性”指的是机器人从由于外力或环境模型中的错误而引起的非常大的干扰中恢复的能力。这只能通过对系统最初计划的运动进行大的修改来实现。该方案基于两个假设:1.利用时变的任务空间定义和预测逆运动学算法,简化和加快了具有奇异性和避碰的稳定运动的实时规划。通过对行走模式和自适应机器人和环境模型的反应性重新规划,增强了对干扰的鲁棒性。在这个项目中开发的方法可以很容易地移植到类似的两足机器人,在很大程度上,也可以移植到更传统的机器人操作器上。具体地说,我们计划在以后使用在这个项目中开发的方法在杂乱、未知的环境中生成农业机器人的运动。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast object approximation for real-time 3D obstacle avoidance with biped robots
Model-based predictive bipedal walking stabilization
基于模型的预测双足行走稳定性
Real-time predictive kinematic evaluation and optimization for biped robots
双足机器人的实时预测运动学评估和优化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Daniel J. Rixen其他文献

Professor Dr. Daniel J. Rixen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Daniel J. Rixen', 18)}}的其他基金

Robust Control and Fidelity Assessment of Real-Time Hybrid Substructuring of Contact Problems
接触问题实时混合子结构的鲁棒控制和保真度评估
  • 批准号:
    450801414
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Adaptive Walking through Multi-Contact Stabilization and Usage of Partial Contacts for Humanoid Robots
人形机器人通过多接触稳定和部分接触使用的自适应行走
  • 批准号:
    407378162
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
HPMultiscale: High Performance Simulation of Space-Time Multiscale Nonlinear Problems
HPMultiscale:时空多尺度非线性问题的高性能仿真
  • 批准号:
    357361040
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Optimization of the Injection Behavior in Common Rail Systems under the Influence of Aging of the Injector
喷油器老化影响下共轨系统喷油行为的优化
  • 批准号:
    252168426
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
  • 批准号:
    60085001
  • 批准年份:
    2000
  • 资助金额:
    14.0 万元
  • 项目类别:
    专项基金项目
ROBUST语音识别方法的研究
  • 批准号:
    69075008
  • 批准年份:
    1990
  • 资助金额:
    3.5 万元
  • 项目类别:
    面上项目
改进型ROBUST序贯检测技术
  • 批准号:
    68671030
  • 批准年份:
    1986
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
  • 批准号:
    EP/Y015878/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
  • 批准号:
    2336840
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Robust Transient State Estimation for Three-Phase Power Systems
三相电力系统的鲁棒瞬态估计
  • 批准号:
    2330377
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research on Robust Multi-Person Gait Recognition Based on the Combination of Human Mesh Model and Silhouette
基于人体网格模型与剪影相结合的鲁棒多人步态识别研究
  • 批准号:
    24K20794
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
  • 批准号:
    2339746
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
  • 批准号:
    2339898
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
  • 批准号:
    2411394
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
  • 批准号:
    2337375
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了