EAGER: Tadoop: A Dual-Purpose Framework Taming the Bipolarity of Storage and Communication for High-Performance Computing and Data Analytics

EAGER:Tadoop:一个双用途框架,克服存储和通信的两极性,实现高性能计算和数据分析

基本信息

  • 批准号:
    1561041
  • 负责人:
  • 金额:
    $ 20.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-16 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

High-performance computing (HPC) providers and applications need next-generation solutions to process big data from scientific simulations. Conventional HPC systems found in national laboratories and universities are constructed based on the compute-centric paradigm while enterprise big data analytics applications prefer a data-centric paradigm such as MapReduce. Distinct architectural differences between these two paradigms demand unconventional approaches. This project takes a radically different approach to investigate key architectural components in compute-centric and data-centric paradigms, designs a transformative dual-purpose framework called Tadoop that addresses their bipolarity issues in storage and communication management, and unifies them for both HPC and enterprise analytics applications. This high-risk Tadoop framework can enable a transformative data infrastructure for both HPC and data analytics applications and lead to broader impact in several aspects, such as demonstrating the transformation of existing HPC infrastructures into dual-purpose systems for computing and analytics, improving computer science curricula and instruction effectiveness, strengthening multidisciplinary data analytics research, releasing open-source software code, and transferring technologies for commercial service.
高性能计算(HPC)提供商和应用程序需要下一代解决方案来处理来自科学模拟的大数据。国家实验室和大学中的传统HPC系统是基于以计算为中心的范例构建的,而企业大数据分析应用程序更喜欢以数据为中心的范例,如MapReduce.这两个范例之间截然不同的体系结构差异要求采用非常规方法。该项目采用了一种截然不同的方法来研究以计算为中心和以数据为中心的范例中的关键体系结构组件,设计了名为Tadoop的变革性双用途框架,该框架解决了存储和通信管理中的两极问题,并将它们统一用于HPC和企业分析应用程序。这个高风险的Tadoop框架可以为高性能计算和数据分析应用程序带来变革性的数据基础设施,并在几个方面产生更广泛的影响,例如展示现有的高性能计算基础设施转变为计算和分析两用系统,改善计算机科学课程和教学有效性,加强多学科数据分析研究,发布开源软件代码,以及将技术转移为商业服务。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SHMEMGraph: Efficient and Balanced Graph Processing Using One-Sided Communication
Efficient User-Level Storage Disaggregation for Deep Learning
Compression of Time Evolutionary Image Data through Predictive Deep Neural Networks
通过预测深度神经网络压缩时间演化图像数据
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roy, Rupak;Sato, Kento;Bhattachrya, Subhadeep;Fang, Xingang;Joti, Yasumasa;Hatsui, Takaki;Hiraki, Toshiyuki;Guo, Jian;Yu, Weikuan.
  • 通讯作者:
    Yu, Weikuan.
Exploration of memory hybridization for RDD caching in Spark
Multivariate modeling and two-level scheduling of analytic queries
  • DOI:
    10.1016/j.parco.2019.01.006
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhuo Liu;Amit Kumar Nath;Xiaoning Ding;Huansong Fu;Md. Muhib Khan;Weikuan Yu
  • 通讯作者:
    Zhuo Liu;Amit Kumar Nath;Xiaoning Ding;Huansong Fu;Md. Muhib Khan;Weikuan Yu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weikuan Yu其他文献

Performance Evaluation of FPGA-Based Biological Applications
基于 FPGA 的生物应用的性能评估
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Storaasli;Weikuan Yu;D. Strenski;James Maltby
  • 通讯作者:
    James Maltby
Ad Hoc File Systems for High-Performance Computing
用于高性能计算的临时文件系统
  • DOI:
    10.1007/s11390-020-9801-1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    A. Brinkmann;K. Mohror;Weikuan Yu;P. Carns;Toni Cortes;S. Klasky;Alberto Miranda;F. Pfreundt;R. Ross;Marc
  • 通讯作者:
    Marc
JVM-Bypass for Efficient Hadoop Shuffling
用于高效 Hadoop Shuffle 的 JVM 旁路
Performance evaluation and tuning of BioPig for genomic analysis
BioPig 用于基因组分析的性能评估和调整
Understanding I/O Behavior in Scientific Workflows on High Performance Computing Systems
了解高性能计算系统上科学工作流程中的 I/O 行为
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fahim Chowdhury;Francesco Di;A. Moody;Elsa Gonsiorowski;K. Mohror;Weikuan Yu
  • 通讯作者:
    Weikuan Yu

Weikuan Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weikuan Yu', 18)}}的其他基金

Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403089
  • 财政年份:
    2024
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Realizing Enhanced Authentication in the Mobile Era
SaTC:核心:小:实现移动时代的增强认证
  • 批准号:
    2131143
  • 财政年份:
    2021
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Standard Grant
IRES Track-1: I/O Research for Data-Intensive Analytics and Deep Learning
IRES Track-1:数据密集型分析和深度学习的 I/O 研究
  • 批准号:
    1952302
  • 财政年份:
    2020
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: ECC: Ephemeral Coherence Cohort for I/O Containerization and Disaggregation
SHF:媒介:协作研究:ECC:I/O 容器化和分解的临时一致性队列
  • 批准号:
    1763547
  • 财政年份:
    2018
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Continuing Grant
CRI: II-New: A Software Defined Infrastructure for Cross-Layer Research on Reconfigurable Architecture and Systems
CRI:II-New:用于可重构架构和系统跨层研究的软件定义基础设施
  • 批准号:
    1822737
  • 财政年份:
    2018
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Standard Grant
Eager: Collaborative Research: DiRecMR: Reconciling the Dichotomy of MapReduce for Efficient Speculation and Resilience
Eager:协作研究:DiRecMR:调和 MapReduce 的二分法以实现高效推测和弹性
  • 批准号:
    1744336
  • 财政年份:
    2017
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Standard Grant
CSR: Small: XooMR: Cross-Layer and Cross-Phase Cooperation for Fair and Efficient MapReduce
CSR:小:XooMR:跨层跨阶段合作实现公平高效的 MapReduce
  • 批准号:
    1564647
  • 财政年份:
    2015
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Standard Grant
EAGER: Tadoop: A Dual-Purpose Framework Taming the Bipolarity of Storage and Communication for High-Performance Computing and Data Analytics
EAGER:Tadoop:一个双用途框架,克服存储和通信的两极性,实现高性能计算和数据分析
  • 批准号:
    1432892
  • 财政年份:
    2014
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Standard Grant
CSR: Small: XooMR: Cross-Layer and Cross-Phase Cooperation for Fair and Efficient MapReduce
CSR:小:XooMR:跨层跨阶段合作实现公平高效的 MapReduce
  • 批准号:
    1320016
  • 财政年份:
    2013
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Standard Grant
II-New: A Compute and Storage Cluster for Multidisciplinary Research on Computer Systems and Scientific Simulations
II-New:用于计算机系统和科学模拟多学科研究的计算和​​存储集群
  • 批准号:
    1059376
  • 财政年份:
    2011
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER: Tadoop: A Dual-Purpose Framework Taming the Bipolarity of Storage and Communication for High-Performance Computing and Data Analytics
EAGER:Tadoop:一个双用途框架,克服存储和通信的两极性,实现高性能计算和数据分析
  • 批准号:
    1432892
  • 财政年份:
    2014
  • 资助金额:
    $ 20.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了