Collaborative Research: Elucidating the Physical Origins of Creep in Cementitious Materials Towards Improved Prediction and Prescription of Creep-Resistant Binders

合作研究:阐明水泥材料蠕变的物理起源,以改进抗蠕变粘合剂的预测和处方

基本信息

  • 批准号:
    1562066
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

Due to its low cost, ease of use, and performance, concrete is by far the most manufactured material in the world. However, a significant limitation is its tendency to creep over long durations. This is especially problematic in high-rise building, as undesirable creep deformations can involve expensive repairs, strengthening, or replacement, or can ultimately result in fracture and failure. The large time scales over which such deformations occur (years) make it challenging, if not impossible, to directly assess the creep propensity of concrete. To this end, numerous predictive models of creep have been suggested. However, most of them lack a sound physical basis and are heavily parameterized, which renders their predictions questionable at best, especially for new emerging binders in which ordinary portland cement is partially or fully replaced by more environment-friendly materials like fly ash, slag or limestone. This project aims to identify the physical origin of the creep in concrete to enable reliable long-term predictions of creep deformations. Based on this knowledge, new testing protocols will be studied, and creep-resistant cementitious binders will be identified. This research integrates multiple disciplines, including physics, material science, and civil engineering and will train a diverse group of students to multi-dimensional engineering.To elucidate the physical origin of creep in concrete, and to discriminate, e.g., between the sliding or dissolution-precipitation mechanisms, this research relies on a combination of simulations. All simulations mutually feed into each others and capture the contribution of each of the relevant scales of cementitious binders. This bottom-up strategy starts from atomistic molecular dynamics coupled with topological constraint theory, culminates in continuum finite element simulations, and benefits from mesoscale modeling to ensure the hand-shake of all the considered spatial scales. Each simulation will be systematically informed, complemented, and validated by experiments, which comprise indentation, vertical scanning interferometry, and uniaxial creep tests. This interdisciplinary effort will identify the decisive variables (e.g., composition, nanostructure, and chemical instability) that render a material sensitive, or not, to long-term aging phenomena such as creep. Pioneering accelerated perturbation-based simulation methods will be evaluated, which will permit the study of long-term aging and degradation phenomena in amorphous materials rapidly. Finally, the project will contribute to reveal the link between bulk properties (chemical composition, structure) and surface properties (e.g., dissolution rates).
由于其成本低,易于使用和性能,混凝土是迄今为止世界上制造最多的材料。然而,一个显著的局限性是它倾向于长时间蠕变。这在高层建筑中尤其成问题,因为不期望的蠕变变形可能涉及昂贵的维修、加固或更换,或者可能最终导致断裂和失效。这种变形发生的时间尺度很大(数年),即使不是不可能,也很难直接评估混凝土的徐变倾向。为此,已经提出了许多蠕变的预测模型。然而,他们中的大多数缺乏一个健全的物理基础,并严重参数化,这使得他们的预测值得怀疑的最好的,特别是对于新兴的粘合剂,其中普通波特兰水泥部分或全部取代更环保的材料,如粉煤灰,矿渣或石灰石。该项目旨在确定混凝土徐变的物理起源,以实现可靠的长期徐变变形预测。在此基础上,将研究新的测试方案,并确定抗蠕变水泥粘结剂。本研究整合了物理学、材料科学和土木工程等多个学科,将培养一批多元化的学生,使他们能够从事多维工程。为了阐明混凝土徐变的物理起源,并区分,例如,在滑动或溶解-沉淀机制之间,本研究依赖于模拟的组合。所有的模拟相互输入,并捕捉每个相关规模的水泥粘结剂的贡献。这种自下而上的策略从原子分子动力学与拓扑约束理论相结合开始,在连续有限元模拟中达到高潮,并受益于中尺度建模,以确保所有考虑的空间尺度的握手。每个模拟将系统地通知,补充,并通过实验验证,其中包括压痕,垂直扫描干涉法,和单轴蠕变试验。这种跨学科的努力将确定决定性的变量(例如,组成、纳米结构和化学不稳定性),这些因素使得材料对诸如蠕变的长期老化现象敏感或不敏感。先锋加速微扰为基础的模拟方法将进行评估,这将使长期的老化和退化现象的研究,在非晶材料迅速。最后,该项目将有助于揭示本体性质(化学成分,结构)和表面性质(例如,溶解速率)。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deciphering the atomic genome of glasses by topological constraint theory and molecular dynamics: A review
  • DOI:
    10.1016/j.commatsci.2018.12.004
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    M. Bauchy
  • 通讯作者:
    M. Bauchy
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mathieu Bauchy其他文献

Insights into the thermal effect on the fracture toughness of calcium silicate hydrate grains: A reactive molecular dynamics study
深入了解热效应对水合硅酸钙颗粒断裂韧性的影响:反应分子动力学研究
  • DOI:
    10.1016/j.cemconcomp.2022.104824
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    10.5
  • 作者:
    Yao Zhang;Shaoqi Zhang;Xi Jiang;Qing Chen;Zhengwu Jiang;J. Woody Ju;Mathieu Bauchy
  • 通讯作者:
    Mathieu Bauchy
ConvFeatNet ensemble: Integrating microstructure and pre-defined features for enhanced prediction of porous material properties
ConvFeatNet集成:整合微观结构和预定义特征以增强对多孔材料性能的预测
Enabling carbon dioxide mineralization and active set control in portlandite-based cementitious suspensions
在基于氢氧化钙的胶凝悬浮液中实现二氧化碳矿化和活性组控制
  • DOI:
    10.1016/j.cemconcomp.2025.106123
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    13.100
  • 作者:
    Xiaodi Dai;Sharu Bhagavathi Kandy;Rui Xiao;Manas Sarkar;Shubham Wani;Thiyagarajan Ranganathan;Narayanan Neithalath;Aditya Kumar;Mathieu Bauchy;Edward Garboczi;Torben Gädt;Samanvaya Srivastava;Gaurav Sant
  • 通讯作者:
    Gaurav Sant
Precipitation of calcium–alumino–silicate–hydrate gels: The role of the internal stress
钙铝硅酸盐水合物凝胶的沉淀:内应力的作用
  • DOI:
    10.1063/5.0010476
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheng Zhao;Wei Zhou;Qi Zhou;Yao Zhang;Han Liu;Gaurav Sant;Xinghong Liu;Lijie Guo;Mathieu Bauchy
  • 通讯作者:
    Mathieu Bauchy
Using graph neural network and symbolic regression to model disordered systems
使用图神经网络和符号回归对无序系统进行建模
  • DOI:
    10.1038/s41598-025-05205-8
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Ruoxia Chen;Mathieu Bauchy;Wei Wang;Yizhou Sun;Xiaojie Tao;Jaime Marian
  • 通讯作者:
    Jaime Marian

Mathieu Bauchy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mathieu Bauchy', 18)}}的其他基金

CAREER: Decoding the Structure and Energy Landscape of Isostatic Glasses by Machine Learning and Enhanced Sampling
职业:通过机器学习和增强采样解码等静压玻璃的结构和能量景观
  • 批准号:
    1944510
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Collaborative Research: Elucidating the Atomic Origin and Mechanism of Relaxation in Silicate Glasses
合作研究:阐明硅酸盐玻璃的原子起源和弛豫机制
  • 批准号:
    1928538
  • 财政年份:
    2019
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
DMREF: Turning Carbon Dioxide into 3D-Printed Concrete via Integrated Machine Learning, Simulations, and Experiments
DMREF:通过集成机器学习、模拟和实验将二氧化碳转化为 3D 打印混凝土
  • 批准号:
    1922167
  • 财政年份:
    2019
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Fracture Mechanics of Glasses with Nanoscale Phase Separation - A Multiscale Experimental and Computational Study
合作研究:纳米级相分离玻璃的断裂力学——多尺度实验和计算研究
  • 批准号:
    1762292
  • 财政年份:
    2018
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Controlling the Resistance to Scratching in Alkali-Free Glasses
合作研究:了解和控制无碱玻璃的耐刮擦性
  • 批准号:
    1826420
  • 财政年份:
    2018
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
  • 批准号:
    2313860
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
  • 批准号:
    2300890
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
  • 批准号:
    2300891
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Collaborative Research: MRA: Elucidating the multi-dimensionality and scaling of avian diversity-vegetation relationships
合作研究:MRA:阐明鸟类多样性与植被关系的多维性和尺度
  • 批准号:
    2307188
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating the Role of Natural Aerosols in Modulating Boundary Layer Clouds and Precipitation in the Southern Ocean
合作研究:阐明天然气溶胶在调节南大洋边界层云和降水中的作用
  • 批准号:
    2246489
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
  • 批准号:
    2313861
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating the roles of biogenic exudates in the cycling and uptake of rare earth elements
合作研究:阐明生物渗出物在稀土元素循环和吸收中的作用
  • 批准号:
    2221913
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating the Ocean Dynamics Governing Melt at Glaciers Using Lagrangian Floats
合作研究:利用拉格朗日浮标阐明控制冰川融化的海洋动力学
  • 批准号:
    2319494
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating Exciton Transport in Hierarchical Organic Materials through Time-Resolved Electronic and Vibrational Spectroscopy/Microscopy
合作研究:通过时间分辨电子和振动光谱/显微镜阐明多级有机材料中的激子传输
  • 批准号:
    2401851
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: Elucidating the multi-dimensionality and scaling of avian diversity-vegetation relationships
合作研究:MRA:阐明鸟类多样性与植被关系的多维性和尺度
  • 批准号:
    2307189
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了