TWC: Medium: Collaborative: Efficient Repair of Learning Systems via Machine Unlearning
TWC:媒介:协作:通过机器取消学习有效修复学习系统
基本信息
- 批准号:1563843
- 负责人:
- 金额:$ 59.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2018-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Today individuals and organizations leverage machine learning systems to adjust room temperature, provide recommendations, detect malware, predict earthquakes, forecast weather, maneuver vehicles, and turn Big Data into insights. Unfortunately, these systems are prone to a variety of malicious attacks with potentially disastrous consequences. For example, an attacker might trick an Intrusion Detection System into ignoring the warning signs of a future attack by injecting carefully crafted samples into the training set for the machine learning model (i.e., "polluting" the model). This project is creating an approach to machine unlearning and the necessary algorithms, techniques, and systems to efficiently and effectively repair a learning system after it has been compromised. Machine unlearning provides a last resort against various attacks on learning systems, and is complementary to other existing defenses. The key insight in machine unlearning is that most learning systems can be converted into a form that can be updated incrementally without costly retraining from scratch. For instance, several common learning techniques (e.g., naive Bayesian classifier) can be converted to the non-adaptive statistical query learning form, which depends only on a constant number of summations, each of which is a sum of some efficiently computable transformation of the training data samples. To repair a compromised learning system in this form, operators add or remove the affected training sample and re-compute the trained model by updating a constant number of summations. This approach yields huge speedup -- the asymptotic speedup over retraining is equal to the size of the training set. With unlearning, operators can efficiently correct a polluted learning system by removing the injected sample from the training set, strengthen an evaded learning system by adding evasive samples to the training set, and prevent system inference attacks by forgetting samples stolen by the attacker so that no future attacks can infer anything about the samples.
如今,个人和组织利用机器学习系统来调节室温、提供建议、检测恶意软件、预测地震、预测天气、机动车辆,并将大数据转化为洞察力。不幸的是,这些系统容易受到各种恶意攻击,并可能造成灾难性的后果。例如,攻击者可能通过向机器学习模型的训练集中注入精心制作的样本(即“污染”模型)来欺骗入侵检测系统,使其忽略未来攻击的警告信号。该项目正在创建一种机器学习方法,以及必要的算法、技术和系统,以便在学习系统受到损害后有效地修复它。机器学习提供了针对学习系统的各种攻击的最后手段,并且是对其他现有防御的补充。机器学习的关键观点是,大多数学习系统都可以转换成一种可以增量更新的形式,而无需从头开始进行昂贵的再培训。例如,几种常见的学习技术(如朴素贝叶斯分类器)可以转换为非自适应统计查询学习形式,这种学习形式只依赖于常数个数的求和,每个求和都是训练数据样本的一些有效可计算变换的和。为了以这种形式修复受损的学习系统,操作员添加或删除受影响的训练样本,并通过更新常量求和来重新计算训练模型。这种方法产生了巨大的加速——重新训练的渐近加速等于训练集的大小。通过unlearning,操作员可以通过从训练集中移除注入的样本来有效地纠正被污染的学习系统,通过向训练集中添加逃避的样本来加强逃避的学习系统,并通过忘记攻击者窃取的样本来防止系统推理攻击,使未来的攻击无法对样本进行任何推断。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yinzhi Cao其他文献
McFIL: Model Counting Functionality-Inherent Leakage
McFIL:模型计数功能 - 固有泄漏
- DOI:
10.48550/arxiv.2306.05633 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Maximilian Zinkus;Yinzhi Cao;M. Green - 通讯作者:
M. Green
WavCraft: Audio Editing and Generation with Large Language Models
WavCraft:使用大型语言模型进行音频编辑和生成
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jinhua Liang;Huan Zhang;Haohe Liu;Yinzhi Cao;Qiuqiang Kong;Xubo Liu;Wenwu Wang;M. Plumbley;Huy Phan;Emmanouil Benetos - 通讯作者:
Emmanouil Benetos
Slowing Down the Aging of Learning-based Malware Detectors with API Knowledge
利用 API 知识减缓基于学习的恶意软件检测器的老化
- DOI:
10.1109/tdsc.2022.3144697 - 发表时间:
2022 - 期刊:
- 影响因子:7.3
- 作者:
Xiaohan Zhang;Mi Zhang;Yuan Zhang;Ming Zhong;Xin Zhang;Yinzhi Cao;Min Yang - 通讯作者:
Min Yang
Fortifying Federated Learning against Membership Inference Attacks via Client-level Input Perturbation
通过客户端级输入扰动强化联邦学习以抵御成员推理攻击
- DOI:
10.1109/dsn58367.2023.00037 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuchen Yang;Haolin Yuan;Bo Hui;N. Gong;Neil Fendley;P. Burlina;Yinzhi Cao - 通讯作者:
Yinzhi Cao
Protecting Web Single Sign-on against Relying Party Impersonation Attacks through a Bi-directional Secure Channel with Authentication
通过带有身份验证的双向安全通道保护 Web 单点登录免遭信赖方模拟攻击
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Yinzhi Cao;Yan Shoshitaishvili;Kevin Borgolte;C. Kruegel;Giovanni Vigna;Yan Chen - 通讯作者:
Yan Chen
Yinzhi Cao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yinzhi Cao', 18)}}的其他基金
CICI: TCR: Transitioning Differentially Private Federated Learning to Enable Collaborative, Intelligent, Fair Skin Disease Diagnostics on Medical Imaging Cyberinfrastructure
CICI:TCR:转变差异化私有联合学习,以实现医学影像网络基础设施上的协作、智能、公平的皮肤病诊断
- 批准号:
2319742 - 财政年份:2024
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
Collaborative Research: DASS: Assessing the Relationship Between Privacy Regulations and Software Development to Improve Rulemaking and Compliance
合作研究:DASS:评估隐私法规与软件开发之间的关系以改进规则制定和合规性
- 批准号:
2317185 - 财政年份:2023
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Studying and Measuring the Consequence of Prototype Pollution Vulnerabilities Automatically via Joint Taintflow Analysis
SaTC:核心:小型:通过联合污染流分析自动研究和测量原型污染漏洞的后果
- 批准号:
2154404 - 财政年份:2022
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
CAREER: Mining and Exploiting Web Vulnerabilities of Prototype-based Programming Languages via Object Property Graph
职业:通过对象属性图挖掘和利用基于原型的编程语言的 Web 漏洞
- 批准号:
2046361 - 财政年份:2021
- 资助金额:
$ 59.99万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Cross-Layer Design of Video Analytics for the Internet of Things
合作研究:CNS 核心:媒介:物联网视频分析的跨层设计
- 批准号:
1955487 - 财政年份:2020
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
CNS Core: Small: Lease-based, Utilitarian Mobile System Design to Enable Energy-Efficient Apps
CNS 核心:小型:基于租赁的实用移动系统设计,支持节能应用
- 批准号:
1910133 - 财政年份:2019
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Preventing Web Side-channel Attacks via Atomic Determinism
SaTC:核心:小:通过原子决定论防止 Web 侧信道攻击
- 批准号:
1812870 - 财政年份:2018
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Efficient Repair of Learning Systems via Machine Unlearning
TWC:媒介:协作:通过机器取消学习有效修复学习系统
- 批准号:
1854000 - 财政年份:2018
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Preventing Web Side-channel Attacks via Atomic Determinism
SaTC:核心:小:通过原子决定论防止 Web 侧信道攻击
- 批准号:
1854001 - 财政年份:2018
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
EAGER: Real-time Enforcement of Content Security Policy upon Real-world Websites
EAGER:在真实网站上实时执行内容安全策略
- 批准号:
1646662 - 财政年份:2016
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
相似海外基金
TWC SBE: Medium: Collaborative: Brain Hacking: Assessing Psychological and Computational Vulnerabilities in Brain-based Biometrics
TWC SBE:媒介:协作:大脑黑客:评估基于大脑的生物识别技术中的心理和计算漏洞
- 批准号:
1840790 - 财政年份:2018
- 资助金额:
$ 59.99万 - 项目类别:
Continuing Grant
TWC: Medium: Collaborative: Black-Box Evaluation of Cryptographic Entropy at Scale
TWC:媒介:协作:大规模密码熵的黑盒评估
- 批准号:
1937622 - 财政年份:2018
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
TWC SBE: Medium: Collaborative: Building a Privacy-Preserving Social Networking Platform from a Technological and Sociological Perspective
TWC SBE:媒介:协作:从技术和社会学角度构建保护隐私的社交网络平台
- 批准号:
1855391 - 财政年份:2018
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Systems, Tools, and Techniques for Executing, Managing, and Securing SGX Programs
TWC:媒介:协作:用于执行、管理和保护 SGX 程序的系统、工具和技术
- 批准号:
1834213 - 财政年份:2018
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Efficient Repair of Learning Systems via Machine Unlearning
TWC:媒介:协作:通过机器取消学习有效修复学习系统
- 批准号:
1854000 - 财政年份:2018
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Seal: Secure Engine for AnaLytics - From Secure Similarity Search to Secure Data Analytics
TWC:媒介:协作:Seal:AnaLytics 的安全引擎 - 从安全相似性搜索到安全数据分析
- 批准号:
1929901 - 财政年份:2018
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
TWC: TTP Option: Medium: Collaborative: MALDIVES: Developing a Comprehensive Understanding of Malware Delivery Mechanisms
TWC:TTP 选项:中:协作:马尔代夫:全面了解恶意软件传播机制
- 批准号:
1748127 - 财政年份:2017
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
TWC SBE: Medium: Collaborative: Dollars for Hertz: Making Trustworthy Spectrum Sharing Technically and Economically Viable
TWC SBE:媒介:协作:赫兹美元:使值得信赖的频谱共享在技术上和经济上可行
- 批准号:
1801986 - 财政年份:2017
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
TWC SBE: Medium: Collaborative: Brain Hacking: Assessing Psychological and Computational Vulnerabilities in Brain-based Biometrics
TWC SBE:媒介:协作:大脑黑客:评估基于大脑的生物识别技术中的心理和计算漏洞
- 批准号:
1564104 - 财政年份:2016
- 资助金额:
$ 59.99万 - 项目类别:
Continuing Grant
TWC: Medium: Collaborative: New Protocols and Systems for RAM-Based Secure Computation
TWC:媒介:协作:基于 RAM 的安全计算的新协议和系统
- 批准号:
1562888 - 财政年份:2016
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant