SHF: Medium: Spectral Profiling: Understanding Software Performance without Code Instrumentation
SHF:中:频谱分析:无需代码检测即可了解软件性能
基本信息
- 批准号:1563991
- 负责人:
- 金额:$ 85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dynamic analyses such as profiling program execution are widely used because they can measure various aspects of the runtime behavior of a software system and have a wide range of applications in software engineering. These analyses are typically carried out by adding probes to the software, which imposes space/time overhead, is intrusive, and can negatively affect software behavior. To address these issues, we propose a novel approach that allows for analyzing software behavior accurately and non-intrusively by leveraging the electromagnetic emissions produced by a computer as it executes code. Our approach can collect runtime information about a software system by simply placing a device next to the system. It can thus not only enable profiling for a variety of software systems for which this was previously impossible (e.g., embedded systems), but also benefit dynamic analyses in more traditional contexts.This project will combine various machine learning and static analysis techniques to build likely electromagnetic signatures for different code patterns, investigate which code granularity provides the most accurate matching of electromagnetic emissions to code, and explore adaptive and hierarchical techniques for performing this matching at runtime. This research is inherently interdisciplinary and promises to break new ground and have broader impact in several combined areas, including software engineering, programming languages, computer architecture, and electromagnetics. Unlike previous work on electromagnetic emissions analysis, our approach will collect runtime information that is fine-grained enough to measure the execution of short sequences of statements, if not individual instructions. This will let us apply our approach to several software engineering tasks. In fact, if successful, this research will both provide a solid conceptual foundation, which other researchers will be able to leverage, and investigate a set of specific techniques and tools that build on this foundation to support tasks such as zero-overhead performance measurement, debugging, and anomaly detection.
诸如剖析程序执行的动态分析被广泛使用,因为它们可以测量软件系统的运行时行为的各个方面,并且在软件工程中具有广泛的应用。这些分析通常通过向软件添加探测器来执行,这会增加空间/时间开销,具有侵入性,并且会对软件行为产生负面影响。为了解决这些问题,我们提出了一种新的方法,允许分析软件行为准确和非侵入性地利用计算机执行代码时产生的电磁辐射。我们的方法可以通过简单地将设备放置在系统旁边来收集有关软件系统的运行时信息。因此,它不仅能够为以前不可能的各种软件系统(例如,这个项目将结合联合收割机各种机器学习和静态分析技术,为不同的代码模式构建可能的电磁签名,研究哪种代码粒度提供最准确的电磁辐射与代码匹配,并探索在运行时执行这种匹配的自适应和分层技术。这项研究本质上是跨学科的,有望开辟新天地,并在软件工程、编程语言、计算机体系结构和电磁学等多个综合领域产生更广泛的影响。与以前的工作电磁辐射分析,我们的方法将收集运行时信息,是细粒度的,足以衡量执行短序列的语句,如果不是个别指令。这将使我们能够将我们的方法应用于几个软件工程任务。事实上,如果成功的话,这项研究将提供一个坚实的概念基础,其他研究人员将能够利用这个基础,并研究一套特定的技术和工具,以支持零开销性能测量,调试和异常检测等任务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alessandro Orso其他文献
Alessandro Orso的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alessandro Orso', 18)}}的其他基金
Collaborative Research: SHF: Medium: A General Framework for Automated Test Transfer
合作研究:SHF:Medium:自动化测试传输的通用框架
- 批准号:
2107125 - 财政年份:2021
- 资助金额:
$ 85万 - 项目类别:
Continuing Grant
EAGER: Collaborative Research: Leveraging Graph Databases for Incremental and Scalable Symbolic Analysis and Verification of Web Applications
EAGER:协作研究:利用图形数据库进行增量和可扩展的 Web 应用程序符号分析和验证
- 批准号:
1548856 - 财政年份:2015
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
I-Corps: Capturing Field Data for Mobile Applications
I-Corps:捕获移动应用程序的现场数据
- 批准号:
1522518 - 财政年份:2015
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
SHF: Small: BugX: In-house Debugging of Field Failures to Improve Software Quality
SHF:小:BugX:现场故障的内部调试以提高软件质量
- 批准号:
1320783 - 财政年份:2013
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Regression Testing Techniques for Real-world Software Systems
SHF:媒介:协作研究:现实世界软件系统的回归测试技术
- 批准号:
1161821 - 财政年份:2012
- 资助金额:
$ 85万 - 项目类别:
Continuing Grant
TC: Small: Collaborative Research: Viewpoints: Discovering Client- and Server-side Input Validation Inconsistencies to Improve Web Application Security
TC:小型:协作研究:观点:发现客户端和服务器端输入验证不一致以提高 Web 应用程序安全性
- 批准号:
1117167 - 财政年份:2011
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
SHF: Medium: MEDITA - Multi-Layer Enterprise-Wide Dynamic Information-Flow Tracking and Assurance
SHF:中:MEDITA - 多层企业范围动态信息流跟踪和保证
- 批准号:
0964647 - 财政年份:2010
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
SHF: Small: Automated Debugging Techniques for Modern Software Systems
SHF:小型:现代软件系统的自动调试技术
- 批准号:
0916605 - 财政年份:2009
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
Collaborative Research: SoD-TEAM: Designing Tests for Evolving Software Systems
协作研究:SoD-TEAM:为不断发展的软件系统设计测试
- 批准号:
0725202 - 财政年份:2008
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
Collaborative Research: Software and Hardware Support for Efficient Monitoring of Program Behavior
协作研究:高效监控程序行为的软硬件支持
- 批准号:
0541080 - 财政年份:2006
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CPS: Medium: Robotic Perception and Manipulation via Full-Spectral Wireless Sensing
合作研究:CPS:媒介:通过全光谱无线传感进行机器人感知和操纵
- 批准号:
2313234 - 财政年份:2023
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Robotic Perception and Manipulation via Full-Spectral Wireless Sensing
合作研究:CPS:媒介:通过全光谱无线传感进行机器人感知和操纵
- 批准号:
2313233 - 财政年份:2023
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
- 批准号:
2212370 - 财政年份:2022
- 资助金额:
$ 85万 - 项目类别:
Continuing Grant
LEAPS-MPS: A Systematic and Automatic Spectral Analysis of Physical Conditions of Circumgalactic Medium using Genetic Algorithms;
LEAPS-MPS:使用遗传算法对环绕银河系介质的物理条件进行系统自动光谱分析;
- 批准号:
2213494 - 财政年份:2022
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
- 批准号:
2212371 - 财政年份:2022
- 资助金额:
$ 85万 - 项目类别:
Continuing Grant
Study of gas dynamics of the intra-cluster medium with high spectral energy resolution
高光谱能量分辨率簇内介质气体动力学研究
- 批准号:
17K05393 - 财政年份:2017
- 资助金额:
$ 85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of new technique for spectral measurement in scattering medium using time-reverse principle with phase-conjugate wave
利用相位共轭波时间反演原理开发散射介质光谱测量新技术
- 批准号:
16K14239 - 财政年份:2016
- 资助金额:
$ 85万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Control of directional reflection and spectral characteristics on environmental surfaces by scattering medium adding microstructure
散射介质添加微结构控制环境表面的定向反射和光谱特性
- 批准号:
15K12231 - 财政年份:2015
- 资助金额:
$ 85万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
High Spectral Resolution Observations of the Interstellar Medium in the Nuclei of Nearby Galaxies using Herschel and SOFIA
使用赫歇尔和索菲亚对附近星系核中的星际介质进行高光谱分辨率观测
- 批准号:
70121006 - 财政年份:2008
- 资助金额:
$ 85万 - 项目类别:
Research Grants
Exploitation of spectral variability to achieve 3D monocular vision in an attenuating medium
利用光谱变异性在衰减介质中实现 3D 单眼视觉
- 批准号:
203584-1998 - 财政年份:2001
- 资助金额:
$ 85万 - 项目类别:
Discovery Grants Program - Individual