TWC: Medium: Collaborative: Efficient Repair of Learning Systems via Machine Unlearning
TWC:媒介:协作:通过机器取消学习有效修复学习系统
基本信息
- 批准号:1564055
- 负责人:
- 金额:$ 60.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Today individuals and organizations leverage machine learning systems to adjust room temperature, provide recommendations, detect malware, predict earthquakes, forecast weather, maneuver vehicles, and turn Big Data into insights. Unfortunately, these systems are prone to a variety of malicious attacks with potentially disastrous consequences. For example, an attacker might trick an Intrusion Detection System into ignoring the warning signs of a future attack by injecting carefully crafted samples into the training set for the machine learning model (i.e., "polluting" the model). This project is creating an approach to machine unlearning and the necessary algorithms, techniques, and systems to efficiently and effectively repair a learning system after it has been compromised. Machine unlearning provides a last resort against various attacks on learning systems, and is complementary to other existing defenses. The key insight in machine unlearning is that most learning systems can be converted into a form that can be updated incrementally without costly retraining from scratch. For instance, several common learning techniques (e.g., naive Bayesian classifier) can be converted to the non-adaptive statistical query learning form, which depends only on a constant number of summations, each of which is a sum of some efficiently computable transformation of the training data samples. To repair a compromised learning system in this form, operators add or remove the affected training sample and re-compute the trained model by updating a constant number of summations. This approach yields huge speedup -- the asymptotic speedup over retraining is equal to the size of the training set. With unlearning, operators can efficiently correct a polluted learning system by removing the injected sample from the training set, strengthen an evaded learning system by adding evasive samples to the training set, and prevent system inference attacks by forgetting samples stolen by the attacker so that no future attacks can infer anything about the samples.
今天,个人和组织利用机器学习系统来调节室温,提供建议,检测恶意软件,预测地震,预报天气,操纵车辆,并将大数据转化为见解。不幸的是,这些系统很容易受到各种恶意攻击,可能造成灾难性的后果。例如,攻击者可能通过将精心制作的样本注入机器学习模型的训练集中来欺骗入侵检测系统忽略未来攻击的警告信号(即,“污染”模型)。该项目正在创建一种机器非学习方法,以及必要的算法,技术和系统,以便在学习系统受到损害后有效地修复学习系统。机器非学习为学习系统提供了抵御各种攻击的最后手段,并且是对其他现有防御的补充。 机器非学习的关键见解是,大多数学习系统可以转换为一种可以增量更新的形式,而无需从头开始进行昂贵的重新训练。例如,几种常见的学习技术(例如,朴素贝叶斯分类器)可以被转换为非自适应统计查询学习形式,其仅取决于恒定数量的求和,每个求和是训练数据样本的一些有效可计算变换的求和。为了修复这种形式的受损学习系统,操作员添加或删除受影响的训练样本,并通过更新恒定数量的求和来重新计算训练模型。这种方法产生了巨大的加速比-再训练的渐近加速比等于训练集的大小。通过去学习,操作员可以通过从训练集中移除注入的样本来有效地纠正受污染的学习系统,通过向训练集中添加规避样本来加强规避的学习系统,并通过忘记攻击者窃取的样本来防止系统推理攻击,以便未来的攻击无法推断任何关于样本的信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junfeng Yang其他文献
Pd/Ming-Phos-Catalyzed Asymmetric Three-Component Arylsilylation of N-Sulfonylhydrazones: Enantioselective Synthesis of gem-Diarylmethine Silanes
Pd/Ming-Phos 催化 N-磺酰腙的不对称三组分芳基硅烷化:对映选择性合成宝石二芳基次甲基硅烷
- DOI:
10.1021/jacs.2c07037 - 发表时间:
2022 - 期刊:
- 影响因子:15
- 作者:
Bin Yang;Kangning Cao;Guofeng Zhao;Junfeng Yang;Junliang Zhang - 通讯作者:
Junliang Zhang
A surface ion imprinted magnetic silica sorbent for the separation and determination of leaching silver in antibacterial food contact products
表面离子印迹磁性二氧化硅吸附剂,用于分离和测定抗菌食品接触产品中浸出的银
- DOI:
10.1139/cjc-2014-0428 - 发表时间:
2015-01 - 期刊:
- 影响因子:1.1
- 作者:
Junfeng Yang;Fan Wang;Jinrong Wang;Bo Wang - 通讯作者:
Bo Wang
Offline data processing software for a Li2MoO4 bolometer demonstration experiment at China Jinping Underground Laboratory
中国锦屏地下实验室Li2MoO4测辐射热计示范实验离线数据处理软件
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1.3
- 作者:
Kangkang Zhao;Mingxuan Xue;Haiping Peng;Deyong Duan;Taiyuan Liu;Yunlong Zhang;Junfeng Yang;Qing Lin;Zizong Xu;Xiaolian Wang - 通讯作者:
Xiaolian Wang
About Event Tracing for Windows
关于 Windows 事件跟踪
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Oren Laadan;N. Viennot;Chia;C. Blinn;Junfeng Yang;Jason Nieh - 通讯作者:
Jason Nieh
Decoupled Power Angle and Voltage Regulation Modes for Electric Springs
电弹簧的解耦功率角和电压调节模式
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Zhi Cai;S. Dai;Kun Zhao;Junfeng Yang - 通讯作者:
Junfeng Yang
Junfeng Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junfeng Yang', 18)}}的其他基金
SBIR Phase I: NimbleDroid: Combining Program Analysis Breakthroughs and Big Data to Improve Mobile App Performance
SBIR 第一阶段:NimbleDroid:结合程序分析突破和大数据来提高移动应用程序性能
- 批准号:
1621982 - 财政年份:2016
- 资助金额:
$ 60.01万 - 项目类别:
Standard Grant
CSR: Small: LOOM: a Language and System for Bypassing and Diagnosing Concurrency Errors
CSR:小:LOOM:一种用于绕过和诊断并发错误的语言和系统
- 批准号:
1117805 - 财政年份:2011
- 资助金额:
$ 60.01万 - 项目类别:
Standard Grant
CAREER: Making Threads More Deterministic by Memoizing Schedules
职业生涯:通过记忆时间表使线程更具确定性
- 批准号:
1054906 - 财政年份:2011
- 资助金额:
$ 60.01万 - 项目类别:
Continuing Grant
CSR: Large: Collaborative Research: SemGrep: a System for Improving Software Reliability Through Semantic Similarity Bug Search
CSR:大型:协作研究:SemGrep:通过语义相似性错误搜索提高软件可靠性的系统
- 批准号:
1012633 - 财政年份:2010
- 资助金额:
$ 60.01万 - 项目类别:
Standard Grant
CSR: Medium: Guanyin: a Thousand hands with a Thousand eyes for Distributed Software Checking
CSR:媒介:观音:分布式软件检查的千手千眼
- 批准号:
0905246 - 财政年份:2009
- 资助金额:
$ 60.01万 - 项目类别:
Continuing Grant
相似海外基金
TWC SBE: Medium: Collaborative: Brain Hacking: Assessing Psychological and Computational Vulnerabilities in Brain-based Biometrics
TWC SBE:媒介:协作:大脑黑客:评估基于大脑的生物识别技术中的心理和计算漏洞
- 批准号:
1840790 - 财政年份:2018
- 资助金额:
$ 60.01万 - 项目类别:
Continuing Grant
TWC: Medium: Collaborative: Black-Box Evaluation of Cryptographic Entropy at Scale
TWC:媒介:协作:大规模密码熵的黑盒评估
- 批准号:
1937622 - 财政年份:2018
- 资助金额:
$ 60.01万 - 项目类别:
Standard Grant
TWC SBE: Medium: Collaborative: Building a Privacy-Preserving Social Networking Platform from a Technological and Sociological Perspective
TWC SBE:媒介:协作:从技术和社会学角度构建保护隐私的社交网络平台
- 批准号:
1855391 - 财政年份:2018
- 资助金额:
$ 60.01万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Systems, Tools, and Techniques for Executing, Managing, and Securing SGX Programs
TWC:媒介:协作:用于执行、管理和保护 SGX 程序的系统、工具和技术
- 批准号:
1834213 - 财政年份:2018
- 资助金额:
$ 60.01万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Efficient Repair of Learning Systems via Machine Unlearning
TWC:媒介:协作:通过机器取消学习有效修复学习系统
- 批准号:
1854000 - 财政年份:2018
- 资助金额:
$ 60.01万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Seal: Secure Engine for AnaLytics - From Secure Similarity Search to Secure Data Analytics
TWC:媒介:协作:Seal:AnaLytics 的安全引擎 - 从安全相似性搜索到安全数据分析
- 批准号:
1929901 - 财政年份:2018
- 资助金额:
$ 60.01万 - 项目类别:
Standard Grant
TWC: TTP Option: Medium: Collaborative: MALDIVES: Developing a Comprehensive Understanding of Malware Delivery Mechanisms
TWC:TTP 选项:中:协作:马尔代夫:全面了解恶意软件传播机制
- 批准号:
1748127 - 财政年份:2017
- 资助金额:
$ 60.01万 - 项目类别:
Standard Grant
TWC SBE: Medium: Collaborative: Dollars for Hertz: Making Trustworthy Spectrum Sharing Technically and Economically Viable
TWC SBE:媒介:协作:赫兹美元:使值得信赖的频谱共享在技术上和经济上可行
- 批准号:
1801986 - 财政年份:2017
- 资助金额:
$ 60.01万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: New Protocols and Systems for RAM-Based Secure Computation
TWC:媒介:协作:基于 RAM 的安全计算的新协议和系统
- 批准号:
1562888 - 财政年份:2016
- 资助金额:
$ 60.01万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Systems, Tools, and Techniques for Executing, Managing, and Securing SGX Programs
TWC:媒介:协作:用于执行、管理和保护 SGX 程序的系统、工具和技术
- 批准号:
1563848 - 财政年份:2016
- 资助金额:
$ 60.01万 - 项目类别:
Standard Grant