ODOMATIC: Automatic Species Identification, Functional Morphology, and Feature Extraction to alleviate the taxonomic impediment and broaden citizen science tools.

ODOMATIC:自动物种识别、功能形态学和特征提取,以减轻分类学障碍并扩大公民科学工具。

基本信息

  • 批准号:
    1564386
  • 负责人:
  • 金额:
    $ 43.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

The naming and classifying of living organisms is a fundamental principal upon which biology is founded. Indeed, almost every facet of our lives - from the food we eat to the medicine we take, the houses we live in to the natural scenery we admire - has a connection to the biodiversity present on Earth. All species must be named and cataloged in order for humans to understand the world around us. The scientific field of taxonomy, responsible for identifying and describing species, has incurred a reduction in its specialist workforce in recent decades; this is unfortunate because the need for taxonomy has never been greater as human activities result in unprecedented decline in the diversity of life. This project will help to reduce the burden placed on current and future taxonomists to identify and catalog biodiversity by introducing a set of open-source, web-based tools for identifying species from images and for measuring imaged specimens for comparative studies. These software tools will be made freely available through the publicly-funded CyVerse web platform. In addition, a system for identifying dragonflies and damselflies called ODOMATIC will be implemented on an existing web presence, OdonataCentral, allowing researchers and enthusiasts to accurately identify these insects from images of their wings. A series of free workshops will be offered in diverse urban communities in New Jersey and Alabama to increase the diversity of OdonataCentral?s user base, encourage participation in the STEM fields, and generally increase appreciation and understanding of the natural world. A series of Google Hangout events will encourage international user-ship for ODOMATIC from World Dragonfly Association members in Latin America, Africa, and Asia. In addition, undergraduate students from Rutgers University-Newark will be recruited to help in designing and training ODOMATIC, giving them valuable experience in research, programming and taxonomy. This work will help to reduce the taxonomic impediment - an urgent need for more taxonomic products, like species descriptions and specimen identifications, from fewer taxonomist workers - by addressing the time-consuming, but necessary, task that is species identification. Objectives of this project include release of a newly-developed system for automatically identifying Odonata (dragonflies and damselflies) from images of their wings, which uses computer vision and machine learning to characterize and classify species. An interface will be deployed making species identification using this system accessible through the OdonataCentral website (odonatacentral.org). In addition, stand-alone tools will be developed for automatically describing and placing geometric morphometric landmarks on specimens in biological imagery for use in morphology-based comparative studies. The successful completion of these objectives will benefit the odonatological community by providing dragonfly and damselfly identification. More broadly, the tools created here will allow biologists studying other groups of organisms to rapidly extract morphological data from images of their specimens.
生物体的命名和分类是生物学建立的基本原则。事实上,我们生活的几乎每一个方面--从我们吃的食物到我们服用的药物,从我们住的房子到我们欣赏的自然风景--都与地球上的生物多样性有关。所有物种都必须被命名和编目,以便人类了解我们周围的世界。负责识别和描述物种的分类学科学领域,在近几十年来已经减少了其专业劳动力;这是不幸的,因为人类活动导致生命多样性前所未有的下降,对分类学的需求从未如此之大。该项目将通过引入一套基于网络的开源工具,用于从图像中识别物种和测量图像标本进行比较研究,从而有助于减轻当前和未来分类学家在识别和编目生物多样性方面的负担。这些软件工具将通过公共资助的CyVerse网络平台免费提供。此外,一个名为ODOMATIC的识别蜻蜓和豆娘的系统将在现有的网络平台OdonataCentral上实现,使研究人员和爱好者能够从翅膀的图像中准确识别这些昆虫。将在新泽西和亚拉巴马的不同城市社区提供一系列免费讲习班,以增加奥多纳塔中心的多样性?的用户群,鼓励参与STEM领域,并普遍增加对自然世界的欣赏和理解。一系列的Google Hangout活动将鼓励拉丁美洲、非洲和亚洲的世界蜻蜓协会成员使用ODOMATIC。此外,来自罗格斯大学纽瓦克分校的本科生将被招募来帮助设计和培训ODOMATIC,为他们提供研究,编程和分类学方面的宝贵经验。这项工作将有助于减少分类障碍-迫切需要更多的分类产品,如物种描述和标本鉴定,由更少的分类学家工作人员完成-解决耗时但必要的任务,即物种鉴定。该项目的目标包括发布一个新开发的系统,用于从蜻蜓(蜻蜓和豆娘)的翅膀图像中自动识别蜻蜓,该系统使用计算机视觉和机器学习来描述和分类物种。 将通过OdonataCentral网站(odonatacentral.org)部署一个界面,使用该系统进行物种识别。 此外,将开发独立工具,用于自动描述和放置生物图像中标本的几何形态测量标志,用于基于形态学的比较研究。 这些目标的成功完成将有利于牙科社区提供牙齿和豆娘识别。 更广泛地说,这里创建的工具将允许研究其他生物群体的生物学家从他们的标本图像中快速提取形态数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jessica Ware其他文献

Jessica Ware的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jessica Ware', 18)}}的其他基金

Collaborative Research: IRES Track I: Odonata morphological adaptations to environmental gradients in Ghana: integrating student research in the field, museum, and laboratory
合作研究:IRES 第一轨:蜻蜓目形态对加纳环境梯度的适应:整合学生在现场、博物馆和实验室的研究
  • 批准号:
    2246258
  • 财政年份:
    2023
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Standard Grant
REU Site: Systematics, Evolution and Conservation for the 21st Century
REU 网站:21 世纪的系统学、进化和保护
  • 批准号:
    2244182
  • 财政年份:
    2023
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrative Phylogenomics of Wing Repurposing, Vestigiality and Loss
合作研究:机翼再利用、退化和损失的综合系统基因组学
  • 批准号:
    2209324
  • 财政年份:
    2023
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Standard Grant
Collaborative Research: GEODE: Genealogy and Ecology of Odonata: the first resolved evolutionary history and global biogeography of an entire insect order
合作研究:GEODE:蜻蜓目的谱系学和生态学:首次解析整个昆虫目的进化历史和全球生物地理学
  • 批准号:
    2002473
  • 财政年份:
    2020
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Continuing Grant
CAREER: Understanding sociality and symbiosis through the eye of non-Neoisopteran termites using molecular and morphological data
职业:利用分子和形态学数据,通过非新异翅目白蚁的眼睛了解社会性和共生性
  • 批准号:
    1453157
  • 财政年份:
    2015
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Continuing Grant
NSF Minority Postdoctoral Research Fellowship for FY2008
2008 财年 NSF 少数族裔博士后研究奖学金
  • 批准号:
    0804424
  • 财政年份:
    2008
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Fellowship Award

相似海外基金

Automatic battery swapping cabinet development for scalability of e-mobility in Uganda
自动电池交换柜开发,以提高乌干达电动汽车的可扩展性
  • 批准号:
    10080435
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Collaborative R&D
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
  • 批准号:
    2338559
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Standard Grant
From corpus to target data as steps for automatic assessment of L2 speech: L2 French phonological lexicon of Japanese learners
从语料库到目标数据作为 L2 语音自动评估的步骤:日语学习者的 L2 法语语音词典
  • 批准号:
    23K20100
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Audiphon (Auditory models for automatic prediction of phonation)
Audiphon(用于自动预测发声的听觉模型)
  • 批准号:
    24K03872
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
  • 批准号:
    2339956
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Continuing Grant
CRII: SHF: Theoretical Foundations of Verifying Function Values and Reducing Annotation Overhead in Automatic Deductive Verification
CRII:SHF:自动演绎验证中验证函数值和减少注释开销的理论基础
  • 批准号:
    2348334
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Standard Grant
Improving The Recycling Rate of Used Printer Cartridges Through Automatic Sortation
通过自动分类提高废旧打印机墨盒的回收率
  • 批准号:
    10113251
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    SME Support
Automatic Control Engineering (ACE) Network
自动控制工程(ACE)网络
  • 批准号:
    EP/X031470/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Research Grant
Sonar Foundational Model for Representation Learning and Automatic Target Recognition Systems in Underwater Maritime Environment
水下海洋环境中表示学习和自动目标识别系统的声纳基础模型
  • 批准号:
    2903803
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Studentship
EAGER: Exploring Automatic Optimization of Multi-tiered HPC Storage Systems via Practical Reinforcement Learning
EAGER:通过实用强化学习探索多层 HPC 存储系统的自动优化
  • 批准号:
    2412345
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了