FRG: Collaborative Research: Stability of Structures Large and Small

FRG:合作研究:大大小小的结构的稳定性

基本信息

  • 批准号:
    1564487
  • 负责人:
  • 金额:
    $ 7.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-15 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

This award supports collaborative research efforts in the area of materials science by an interdisciplinary team comprising pure mathematicians, applied mathematicians, computer scientists, and physicists. Answers to natural questions about the stability and rigidity of material structures involve understanding the geometry of their components. Recent advances in materials synthesis have emphasized the need for a deeper understanding of the geometric stability of physical structures at the atomic scale and the need for insight at all scales, from atomic to macroscopic. Key mathematical tools for this analysis come from the area of "rigidity theory," which studies the mathematical properties of discrete sets of points with the distances between certain pairs of points held fixed or constrained by distance inequalities. Rigidity theory lies at the nexus of discrete geometry, graph theory, and algorithms, and it has deep connections to semidefinite programming and convex geometry. This project aims to deepen understanding of the stability of material structures. One goal of this project is to develop a mechanistic explanation of tunneling between asymmetric stable configurations of two-dimensional disordered materials, such as glass. Construction of accurate mechanistic and computational models requires deep mathematical analysis and development of appropriate algorithms. A second goal is to develop methods for predicting the stability, configurational entropy, and kinetics of small short-ranged-potential systems in three dimensions. Examples of such distance-constraint systems include small molecular structures, as well as colloidal clusters, containing a few particles bound together by reversible attractive interactions, modeled as sticky spheres. What kinds of rigid configurations are there, and what are computationally feasible tests for their rigidity? How do these particles move and the structures deform? There is a tight link between rigidity theory and the general convexity and duality properties of the positive semidefinite cone, a central concept in numerical optimization. Finding a recursive decomposition of a generically rigid framework into rigid subsystems is a longstanding problem. Additionally, matroid theory, important in rigidity theory, has made the characterization of rigid systems more approachable and more algorithmically efficient. Rigidity theory could have implications for algorithms for low-rank matrix completion as well. These connections, questions, and implications will be explored in this project.
该奖项支持由纯数学家,应用数学家,计算机科学家和物理学家组成的跨学科团队在材料科学领域的合作研究工作。关于材料结构的稳定性和刚性的自然问题的答案涉及理解其组成部分的几何形状。 材料合成的最新进展强调了在原子尺度上对物理结构的几何稳定性有更深入理解的必要性,以及从原子到宏观的所有尺度上的洞察力的必要性。这种分析的关键数学工具来自“刚性理论”领域,它研究离散点集的数学性质,其中某些点对之间的距离保持固定或受到距离不等式的约束。刚性理论是离散几何、图论和算法的结合点,它与半定规划和凸几何有着深刻的联系。 该项目旨在加深对材料结构稳定性的理解。该项目的一个目标是开发一个机制的解释隧道之间的不对称稳定配置的二维无序材料,如玻璃。精确的机械和计算模型的构建需要深入的数学分析和适当的算法的开发。第二个目标是发展预测三维小短程势系统的稳定性、构型熵和动力学的方法。这样的距离约束系统的例子包括小分子结构,以及胶体簇,包含一些粒子通过可逆的吸引力相互作用结合在一起,建模为粘性球。有什么样的刚性配置,什么是计算上可行的测试,他们的刚性?这些粒子是如何移动的,结构是如何变形的?刚性理论与半正定锥的一般凸性和对偶性之间有着紧密的联系,半正定锥是数值优化中的一个中心概念。寻找一个递归分解的一般刚性框架刚性子系统是一个长期存在的问题。此外,拟阵理论,重要的刚性理论,使刚性系统的表征更接近和更有效的算法。刚性理论也可能对低秩矩阵完备化算法产生影响。这些联系,问题和影响将在本项目中进行探讨。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Miranda Holmes-Cerfon其他文献

Transverse rigidity is prestress stability
  • DOI:
    10.1016/j.dam.2022.07.019
  • 发表时间:
    2022-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Steven J. Gortler;Miranda Holmes-Cerfon;Louis Theran
  • 通讯作者:
    Louis Theran

Miranda Holmes-Cerfon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Miranda Holmes-Cerfon', 18)}}的其他基金

Collaborative Research: Numerical methods for high-dimensional sticky diffusions
合作研究:高维粘性扩散的数值方法
  • 批准号:
    2111163
  • 财政年份:
    2021
  • 资助金额:
    $ 7.85万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 7.85万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 7.85万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 7.85万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 7.85万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 7.85万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 7.85万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 7.85万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 7.85万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 7.85万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 7.85万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了