Collaborative Research: ABI Development: Creating a generic workflow for scaling up the production of species ranges

合作研究:ABI 开发:创建扩大物种范围生产的通用工作流程

基本信息

  • 批准号:
    1564643
  • 负责人:
  • 金额:
    $ 9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

The science of forecasting where a species can live and how it responds to climate change is still in its infancy. A species' geographic range is the map of where a species can be found. It is fundamental to understanding species' ecology and evolution and increasingly plays a vital role in conservation. Collections of species ranges covering most of the 30,000 terrestrial vertebrate species are already available for scientific analysis. However, collections of species ranges from the other ~95% of species on the planet are rare. The time is ripe to change this. New access to vast quantities of data from biological inventories, museums, citizen science, and previously funded studies mean that adequate data are available to estimate the ranges of many more species. However, we are currently missing robust forecasting methods and the computational tools to produce large numbers of ranges. This project will develop the novel computational methods and algorithms needed to forecast the current state and future fate of the many thousands of poorly studied species ranges. These methods will be applied to forecast how 100,000+ plant species in the New World will respond to climate change. The researchers will test key assumptions in conservation biology about how species respond to changing climate and the geographic constancy of diversity hotspots across North and South America have/will change over time. The end result of their work will be a novel tool for the ecological community that has tremendous potential to guide biological sampling strategies, particularly in conservation and citizen science applications. The proposed research will examine whether biodiversity hotspots are constant through time and whether species climatic niches are phylogenetically conserved, two implicit assumptions with wide-reaching implications in conservation biology and basic ecology. This research will develop a workflow to predict species ranges for any taxonomic group using by combining occurrence data with GIS data. This workflow will be applied to all New World plants to study basic questions, such as how species richness varies across space and time (a topic studied almost exclusively in vertebrates and trees). Computationally, the project will address core challenges in data scrubbing, niche modeling practices, novel niche modeling methods, and mega-phylogeny analysis methods. A freely available generic pipeline will be capable of linking biodiversity occurrence data to species ranges and scaling these computations to 1000s or 100,000s of species. This integrated pipeline will be implemented by: 1) appropriately scrubbing data to remove taxonomic and geographic errors, 2) identifying clear best practice methods for range modeling applicable across diverse species, 3) innovating range modeling methods that integrate diverse data such as presence only museum collections and abundance-based plot data 4) scaling computationally-intensive range modeling in an HPC environment, and 5) placing the outputs of the products in a phylogenetic context. This project will develop such a pipeline using a novel database of 20,000,000 observations of 100,000+ species of plants in the New World. The range forecasts produced will be used to test key assumptions in conservation biology about the phylogenetic conservatism of species climatic niches and the geographic constancy of diversity hotspots over time. This research will make substantial contributions to scientific infrastructure through the development of a scientific codebase for the production of high-quality species ranges from primary biodiversity data. The results of the project can be found via the following websites (http://bien.nceas.ucsb.edu/bien/ and bien3.org).
预测一个物种可以在哪里生活以及它如何应对气候变化的科学仍处于初级阶段。物种的地理范围是物种所在位置的地图。它是理解物种生态和进化的基础,在保护中发挥着越来越重要的作用。涵盖30,000种陆生脊椎动物中大部分物种的物种范围集合已经可以用于科学分析。然而,从地球上其他95%的物种收集的物种是罕见的。改变这一点的时机已经成熟。从生物清单、博物馆、公民科学和以前资助的研究中获得大量数据的新途径意味着,有足够的数据可以估计更多物种的范围。然而,我们目前缺少可靠的预测方法和计算工具来产生大量的范围。该项目将开发新的计算方法和算法,以预测数千个研究较少的物种范围的当前状态和未来命运。这些方法将被用于预测新大陆的10万多种植物将如何应对气候变化。研究人员将测试保护生物学中的关键假设,即物种如何应对不断变化的气候,以及北美和南美洲多样性热点的地理稳定性已经/将随着时间的推移而变化。他们工作的最终结果将是为生态界提供一种新的工具,具有巨大的潜力来指导生物采样策略,特别是在保护和公民科学应用方面。这项拟议的研究将审查生物多样性热点是否随时间变化不变,以及物种气候生态位是否在系统发育上是保守的,这两个隐含的假设在保护生物学和基础生态学中具有广泛的影响。这项研究将开发一种工作流程,通过将出现数据与地理信息系统数据相结合来预测任何分类群的物种范围。这一工作流程将应用于所有新大陆植物,以研究基本问题,如物种丰富度如何在空间和时间上变化(这一主题几乎只在脊椎动物和树木中研究)。在计算上,该项目将解决数据清理、生态位建模实践、新的生态位建模方法和大型系统发展分析方法方面的核心挑战。免费提供的通用管道将能够将生物多样性出现数据与物种范围联系起来,并将这些计算扩展到1000或100,000个物种。这条整合的管道将通过以下方式实施:1)适当地清理数据以消除分类和地理错误;2)确定适用于不同物种的范围建模的明确最佳实践方法;3)创新范围建模方法,整合各种数据,如仅有博物馆藏品和基于丰度的地块数据;4)在HPC环境中扩展计算密集型的范围建模;以及5)将产品的输出放在系统发育的背景下。该项目将使用一个新的数据库来开发这样一个管道,该数据库包含对新大陆100,000多种植物的2000万次观测。产生的范围预测将用于检验保护生物学中关于物种气候生态位的系统发育保守性和多样性热点随时间的地理稳定性的关键假设。这项研究将通过开发一个科学代码库,从初级生物多样性数据中产生高质量的物种范围,从而为科学基础设施作出重大贡献。该项目的结果可通过以下网站(http://bien.nceas.ucsb.edu/bien/和bien3.org)查阅。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian McGill其他文献

Reply to: Do not downplay biodiversity loss
回复:不要轻视生物多样性的丧失
  • DOI:
    10.1038/s41586-021-04180-0
  • 发表时间:
    2022-01-26
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Brian Leung;Anna L. Hargreaves;Dan A. Greenberg;Brian McGill;Maria Dornelas;Robin Freeman
  • 通讯作者:
    Robin Freeman
Reply to: Shifting baselines and biodiversity success stories
回复:改变基线和生物多样性的成功案例
  • DOI:
    10.1038/s41586-021-03749-z
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Brian Leung;Anna L Hargreaves;D. Greenberg;Brian McGill;M. Dornelas
  • 通讯作者:
    M. Dornelas
Synthesis reveals approximately balanced biotic differentiation and homogenization
合成揭示了大致平衡的生物分化和均质化
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    S. Blowes;Brian McGill;V. Brambilla;Cher F. Y. Chow;Thore Engel;Ada Fontrodona;Inês S. Martins;Daniel McGlinn;Faye Moyes;A. Sagouis;Hideyasu Shimadzu;Roel van Klink;Wu;N. Gotelli;A. Magurran;M. Dornelas;Jonathan M. Chase
  • 通讯作者:
    Jonathan M. Chase
Disentangling non-random structure from random placement when estimating β-diversity through space or time
在通过空间或时间估计 β 多样性时,将非随机结构与随机放置分开
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. McGlinn;S. Blowes;M. Dornelas;Thore Engel;Inês S. Martins;Hideyasu Shimadzu;N. Gotelli;A. Magurran;Brian McGill;Jonathan M. Chase
  • 通讯作者:
    Jonathan M. Chase
Land use matters
土地使用问题很重要
  • DOI:
    10.1038/520038a
  • 发表时间:
    2015-04-01
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Brian McGill
  • 通讯作者:
    Brian McGill

Brian McGill的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian McGill', 18)}}的其他基金

RII Track-2 FEC: Harnessing Spatiotemporal Data Science to Predict Responses of Biodiversity and Rural Communities under Climate Change
RII Track-2 FEC:利用时空数据科学预测气候变化下生物多样性和农村社区的反应
  • 批准号:
    2019470
  • 财政年份:
    2020
  • 资助金额:
    $ 9万
  • 项目类别:
    Cooperative Agreement
Postdoctoral Research Fellowship in Interdisciplinary Informatics for FY 2003
2003财年跨学科信息学博士后研究奖学金
  • 批准号:
    0306036
  • 财政年份:
    2003
  • 资助金额:
    $ 9万
  • 项目类别:
    Fellowship Award

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Sustainable ABI: Arctos Sustainability
合作研究:可持续 ABI:Arctos 可持续性
  • 批准号:
    2034568
  • 财政年份:
    2021
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
  • 批准号:
    2201182
  • 财政年份:
    2021
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data
协作研究:ABI 开发:Symbiota2:为调动生物多样性数据提供更大的协作和灵活性
  • 批准号:
    2209978
  • 财政年份:
    2021
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
  • 批准号:
    2028361
  • 财政年份:
    2020
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
  • 批准号:
    2048296
  • 财政年份:
    2020
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
  • 批准号:
    2021734
  • 财政年份:
    2020
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Biofilm Resource and Information Database (BRaID): A Tool to Fuse Diverse Biofilm Data Types
合作研究:ABI 创新:生物膜资源和信息数据库 (BRaID):融合多种生物膜数据类型的工具
  • 批准号:
    2027203
  • 财政年份:
    2019
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Bilateral BBSRC-NSF/BIO Collaborative Research: ABI Development: A Critical Assessment of Protein Function Annotation
BBSRC-NSF/BIO 双边合作研究:ABI 开发:蛋白质功能注释的批判性评估
  • 批准号:
    1854685
  • 财政年份:
    2018
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Building a Pipeline for Validation, Curation and Archiving of Integrative/Hybrid Models
合作研究:ABI 开发:构建集成/混合模型的验证、管理和归档管道
  • 批准号:
    1756250
  • 财政年份:
    2018
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Development: The next stage in protein-protein docking
合作研究:ABI 开发:蛋白质-蛋白质对接的下一阶段
  • 批准号:
    1759472
  • 财政年份:
    2018
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了