New Methods in Tensor Triangular Geometry

张量三角形几何的新方法

基本信息

  • 批准号:
    1600032
  • 负责人:
  • 金额:
    $ 15.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Tensor triangular geometry, the theme of this research project, bridges a large class of specialized areas of mathematics, including stable homotopy theory, algebraic geometry, modular representation theory, motivic theory, and noncommutative topology. Tensor triangular geometry promises to serve as an overarching theory that facilitates the transposition of techniques and methods from one specialized area to neighboring ones, providing conceptual unification among those fields. Moreover, it displays steadily expanding influence in mathematics. For instance, via tensor triangular geometry, the subject of étale topology in modern algebraic geometry now bears new applications in modular representation theory, where it provides answers to longstanding problems about the relations between representations of finite groups of order a power of a prime number and representations of arbitrary general finite groups. This research project aims to broaden and deepen understanding in the field of tensor triangular geometry.This project studies the geometry of tensor-triangulated categories as they appear in several areas of mathematics. Tensor-triangulated categories are now in common use in algebraic geometry, in modular representation theory, stable homotopy theory, and its equivariant versions, in motivic theory, in equivariant noncommutative topology, and beyond. This project aims to develop new methods in tensor triangular geometry, in order to study those many different incarnations from a unified perspective. In recent years, much progress has been made in étale extensions (i.e., separable and commutative extensions) of tensor-triangulated categories and on the related theory of descent. The present project builds on these and related results and aims to apply descent to connect the algebraic geometry of projective support varieties with the modular representation theory of finite groups. Some applications of these techniques can be spelled out in concrete terms without tensor-triangular technicalities. For instance, in work on endotrivial modules the investigator introduced "weak homomorphisms." It appears that the very same weak homomorphisms are connected to complex line bundles on the Brown simplicial complex of p-subgroups. Further investigation of their role in algebraic geometry is part of the current project. Another general theme of the project is the computation of the "spectrum" of a tensor-triangulated category. A new general approach for such computations comes through filtering tensor-triangulated categories and understanding the successive strata via étale extensions. An early prototype of this method has been applied to compute the spectrum of the equivariant stable homotopy category of a finite group. The project aims to transport those ideas to new examples.
张量三角几何,这个研究项目的主题,桥梁一类专业领域的数学,包括稳定同伦理论,代数几何,模表示理论,motivic理论和非交换拓扑。 张量三角几何有望作为一个总体理论,促进技术和方法从一个专业领域到相邻领域的换位,提供这些领域之间的概念统一。此外,它在数学中的影响力稳步扩大。例如,通过张量三角几何,现代代数几何中的代数拓扑学在模表示论中有了新的应用,它回答了关于素数幂阶有限群的表示与任意一般有限群的表示之间关系的长期问题。 该研究项目旨在拓宽和加深对张量三角几何领域的理解。该项目研究张量三角化范畴在多个数学领域中出现的几何形状。张量三角化范畴现在在代数几何、模表示论、稳定同伦论及其等变版本、动机论、等变非交换拓扑等领域中普遍使用。本项目旨在发展张量三角几何的新方法,以便从统一的角度研究这些不同的化身。近年来,在étale扩展方面取得了很大进展(即,可分和交换的扩展)的张量三角范畴和有关理论的下降。本项目建立在这些和相关的结果,旨在应用下降连接代数几何的投影支持品种与有限群的模表示理论。这些技术的一些应用可以在没有张量三角技术的情况下具体说明。例如,在研究内平凡模时,研究者引入了“弱同态”。“看来,非常相同的弱同态连接到p-子群的布朗单纯复形上的复线丛。进一步研究它们在代数几何中的作用是当前项目的一部分。该项目的另一个主题是计算张量三角范畴的“谱”。这种计算的一种新的通用方法是通过过滤张量三角分类,并通过étale扩展来理解连续的层。这种方法的一个早期原型已被用于计算有限群的等变稳定同伦范畴的谱。该项目旨在将这些想法转化为新的例子。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Relative stable categories and birationality
Nilpotence theorems via homological residue fields
  • DOI:
    10.2140/tunis.2020.2.359
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Paul Balmer
  • 通讯作者:
    Paul Balmer
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Balmer其他文献

Conformal holonomy equals ambient holonomy
适形完整性等于环境完整性
  • DOI:
    10.2140/pjm.2016.285.303
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    AP ANDREASˇC;A. R. O. G. Over;C. R. Obin;G. R. And;M. A. H. Ammerl;Paul Balmer;Robert Finn;Sorin Popa;Vyjayanthi Chari;Kefeng Liu;Igor Pak;Paul Yang;Daryl Cooper;Jiang;Jie Qing;Silvio Levy
  • 通讯作者:
    Silvio Levy
A Gersten–Witt spectral sequence for regular schemes
常规方案的 Gersten-Witt 谱序列
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Balmer;C. Walter
  • 通讯作者:
    C. Walter
On the surjectivity of the map of spectra associated to a tensor‐triangulated functor
关于与张量三角函子相关的光谱图的满射性
Descent in triangulated categories
三角类别的下降
  • DOI:
    10.1007/s00208-011-0674-z
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Paul Balmer
  • 通讯作者:
    Paul Balmer
VECTOR-VALUED MOCK MODULAR
向量值模拟模块
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. N. M. Ono;Matthias Aschenbrenner;Robert Lipshitz;Paul Balmer;Kefeng Liu;Paul Yang;Vyjayanthi Chari;Sorin Popa
  • 通讯作者:
    Sorin Popa

Paul Balmer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Balmer', 18)}}的其他基金

Fields in Tensor-Triangular Geometry and Applications
张量三角形几何领域及其应用
  • 批准号:
    2153758
  • 财政年份:
    2022
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant
Motivic and Equivariant Tensor-Triangular Geometry
动机和等变张量三角形几何
  • 批准号:
    1901696
  • 财政年份:
    2019
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant
ETALE TOPOLOGY IN TENSOR TRIANGULAR GEOMETRY
张量三角形几何中的ETALE拓扑
  • 批准号:
    1303073
  • 财政年份:
    2013
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant
Tensor triangulated categories: geometry and applications
张量三角类别:几何和应用
  • 批准号:
    0969644
  • 财政年份:
    2010
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Continuing Grant
Tensor Triangular Geometry and Applications
张量三角形几何及其应用
  • 批准号:
    0654397
  • 财政年份:
    2007
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
  • 批准号:
    2401159
  • 财政年份:
    2024
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Continuing Grant
Tensor decomposition methods for multi-omics immunology data analysis
用于多组学免疫学数据分析的张量分解方法
  • 批准号:
    10655726
  • 财政年份:
    2023
  • 资助金额:
    $ 15.8万
  • 项目类别:
Harnessing Quantum Computational Methods, Tensor Networks, and Machine Learning for Advanced Simulations in Quantum Field Theories
利用量子计算方法、张量网络和机器学习进行量子场论的高级模拟
  • 批准号:
    2876830
  • 财政年份:
    2023
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Studentship
Tensor and Regularization Methods for (Semantic) Deep Learning: Application to Robotic Perception
(语义)深度学习的张量和正则化方法:在机器人感知中的应用
  • 批准号:
    RGPIN-2018-06134
  • 财政年份:
    2022
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Tensor Factorization Methods for High-Level Electronic Structure Theory
职业:高级电子结构理论的张量分解方法
  • 批准号:
    2143725
  • 财政年份:
    2022
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant
Phase transitions, criticality and non-trivial topological states in non-equilibrium driven-dissipative systems using analytical methods and tensor ne
使用分析方法和张量 ne 的非平衡驱动耗散系统中的相变、临界性和非平凡拓扑态
  • 批准号:
    2731618
  • 财政年份:
    2022
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Studentship
New iterative, tensor, and collocation methods for computing ro-vibrational spectra and inelastic rate constants
用于计算旋转振动谱和非弹性速率常数的新迭代、张量和配置方法
  • 批准号:
    RGPIN-2019-04357
  • 财政年份:
    2022
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Discovery Grants Program - Individual
Tensor and Regularization Methods for (Semantic) Deep Learning: Application to Robotic Perception
(语义)深度学习的张量和正则化方法:在机器人感知中的应用
  • 批准号:
    RGPIN-2018-06134
  • 财政年份:
    2021
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Discovery Grants Program - Individual
Tensor Models, Methods, and Medicine
张量模型、方法和医学
  • 批准号:
    2111440
  • 财政年份:
    2021
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant
CAREER: Extrapolation Methods for Matrix and Tensor Eigenvalue Problems
职业:矩阵和张量特征值问题的外推方法
  • 批准号:
    2045059
  • 财政年份:
    2021
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了