Interactions between Computability Theory and Model Theory
可计算性理论与模型理论之间的相互作用
基本信息
- 批准号:1600228
- 负责人:
- 金额:$ 25.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While computability theory studies complexity of mathematical objects from a computational point of view, model theory studies complexity of mathematical objects from a structural point of view. This project aims to deepen understanding of the interactions between these two different notions of complexity. In general, one expects that the more structured an object is, the easier it is to compute information about it. This research project aims to elucidate how a mathematical object having an understandable theory relates to computability of facts about the object.In particular, this project works towards understanding certain problems in computable model theory: the spectrum of computable models question asks which sets of dimensions can arise as the dimensions of computable models of some uncountably categorical theory. The project will investigate distinguishing this problem based on the geometric nature of the theory, with the goal of advancing understanding in the cases where the theory satisfies the Zilber trichotomy. This project also aims to advance understanding of the degree spectra of theories. The degree spectrum of a theory measures how hard it is to compute any model of that theory. The investigator aims to develop a newer notion that will highlight connections between properties of the theory and the properties of the spectrum, providing a further link between computability and model theory. The project also investigates index sets of model theoretic notions; this is a computability-theoretic way to measure the complexity of a property. Knowing the exact complexity of a property aids in working with these properties in the most direct and efficient manner possible, thus spurring further research progress.
可计算性理论从计算的角度研究数学对象的复杂性,而模型理论从结构的角度研究数学对象的复杂性。该项目旨在加深对这两种不同的复杂性概念之间相互作用的理解。一般来说,人们期望对象的结构化程度越高,计算有关它的信息就越容易。该研究项目旨在阐明具有可理解理论的数学对象如何与该对象的事实的可计算性相关。特别是,该项目致力于理解可计算模型理论中的某些问题:可计算模型的频谱问题询问哪些维度集可以作为某些不可数分类理论的可计算模型的维度而出现。该项目将研究根据理论的几何性质来区分这个问题,目的是促进对理论满足 Zilber 三分法的情况的理解。该项目还旨在增进对理论度谱的理解。理论的度谱衡量计算该理论的任何模型的难度。研究人员的目标是开发一个新的概念,强调理论属性和谱属性之间的联系,提供可计算性和模型理论之间的进一步联系。该项目还研究了模型理论概念的索引集;这是一种衡量属性复杂性的可计算性理论方法。了解属性的确切复杂性有助于以最直接、最有效的方式处理这些属性,从而促进进一步的研究进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Uri Andrews其他文献
On the structure of the degrees of relative provability
- DOI:
10.1007/s11856-015-1182-8 - 发表时间:
2015-03-28 - 期刊:
- 影响因子:0.800
- 作者:
Uri Andrews;Mingzhong Cai;David Diamondstone;Steffen Lempp;Joseph S. Miller - 通讯作者:
Joseph S. Miller
2014 NORTH AMERICAN ANNUAL MEETING OF THE ASSOCIATION FOR SYMBOLIC LOGIC University of Colorado, Boulder Boulder, CO, USA May 19–22, 2014
符号逻辑协会 2014 年北美年会 科罗拉多大学博尔德分校 美国科罗拉多州博尔德 2014 年 5 月 19-22 日
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0.6
- 作者:
Marcia Groszek;R. A. R. .. ALEX WILKIE;Barbara F. Csima;D. Dorais;J. Dzhafarov;P. Mileti;Shafer Michael;Hrusak;Alexei S. Kolesnikov;When CHRIS LASKOWSKI;Naoki Kobayashi;Alfred Dolich;Eva Leenknegt;J. V. Benthem;S. Brams;Uri Andrews;And MINGZHONG CAI;David Diamondstone;Andrei A. Bulatov - 通讯作者:
Andrei A. Bulatov
2016 NORTH AMERICAN ANNUAL MEETING OF THE ASSOCIATION FOR SYMBOLIC LOGIC University of Connecticut Storrs, CT, USA May 23–26, 2016
符号逻辑协会 2016 年北美年会 康涅狄格大学 美国康涅狄格州斯托尔斯 2016 年 5 月 23-26 日
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0.6
- 作者:
A. Urquhart;Zoé Chatzidakis;École Normale;Magdalena Kaufmann;Patricia A. Blanchette;Uri Andrews;Hristo Ganchev;R. Kuyper;Steffen Lempp;Joseph S. Miller;And ALEXANDRA A. SOSKOVA;M. Soskova;Eric P. Astor;D. Dzhafarov;And REED SOLOMON;Jacob Suggs;David R. Belanger;Greg Igusa;Ludovic Patey;D. Turetsky;Jonathan Stephenson;Erin Caulfield;Spencer Unger - 通讯作者:
Spencer Unger
Independence relations in randomizations
随机化中的独立关系
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Uri Andrews;Isaac Goldbring;H. Keisler - 通讯作者:
H. Keisler
The index set of uncountably categorical theories
- DOI:
10.1007/s11856-013-0011-1 - 发表时间:
2013-05-16 - 期刊:
- 影响因子:0.800
- 作者:
Uri Andrews;Tamvana Makuluni - 通讯作者:
Tamvana Makuluni
Uri Andrews的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Uri Andrews', 18)}}的其他基金
Computable model theory and invariant descriptive computability theory
可计算模型理论和不变描述可计算性理论
- 批准号:
2348792 - 财政年份:2024
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
相似海外基金
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 25.6万 - 项目类别:
Studentship
Translations between Type Theories
类型理论之间的翻译
- 批准号:
EP/Z000602/1 - 财政年份:2025
- 资助金额:
$ 25.6万 - 项目类别:
Research Grant
CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
- 批准号:
2337830 - 财政年份:2024
- 资助金额:
$ 25.6万 - 项目类别:
Continuing Grant
CAREER: Closing the Loop between Learning and Communication for Assistive Robot Arms
职业:关闭辅助机器人手臂的学习和交流之间的循环
- 批准号:
2337884 - 财政年份:2024
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333102 - 财政年份:2024
- 资助金额:
$ 25.6万 - 项目类别:
Continuing Grant
Exploration of relationship between floods, poverty, and dynamic environmental sustainability
探索洪水、贫困和动态环境可持续性之间的关系
- 批准号:
24K07692 - 财政年份:2024
- 资助金额:
$ 25.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of crosstalk between Fanconi Anemia pathway and ATM for novel therapeutic strategies of chemoresistant ALT-positive high-risk neuroblastoma
范可尼贫血通路与 ATM 之间的串扰研究,用于化疗耐药 ALT 阳性高危神经母细胞瘤的新治疗策略
- 批准号:
24K10442 - 财政年份:2024
- 资助金额:
$ 25.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Thwarted Identity: The Missing Link Between Psychopathology and Prejudice
受挫的身份:精神病理学与偏见之间缺失的联系
- 批准号:
DP240100108 - 财政年份:2024
- 资助金额:
$ 25.6万 - 项目类别:
Discovery Projects
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 25.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists