Modern Approaches for Classical Diophantine Problems

经典丢番图问题的现代方法

基本信息

  • 批准号:
    1601837
  • 负责人:
  • 金额:
    $ 14.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

This research project concerns Diophantine approximation and the geometry of numbers. Diophantine approximation deals with approximation of real numbers by rational numbers and with questions of classification of given numbers as irrational, algebraic, or transcendental. Diophantine equations are algebraic equations with integer coefficients, for which integer solutions are sought. The geometry of numbers deals with the use of geometric notions to solve problems in number theory, usually via the solutions of equations in integers. One of the basic problems of mathematics is to find the solutions of a given polynomial equation. The level of difficulty of such problems depends on the shape of the polynomial and more so on what kind of solutions one is looking for. Finding complex numbers that are solutions to a polynomial equation is a relatively easy task. However, finding integer solutions to polynomial equations is a problem of much greater subtlety and depth, and is the focus of number theory. This project aims to broaden and deepen knowledge in this fundamental area.The purpose of this research project is to study the general problem of counting integral solutions of Diophantine equations and its applications. The PI will develop methodological advances by combining techniques from classical analysis with modern applications of analytic number theory and arithmetic geometry to address some important and long standing Diophantine problems effectively and explicitly. The research is also concerned with studying the distribution of integral solutions to Diophantine equations. Results of the project are anticipated to lead to substantially better understanding of the geometric and analytic properties of certain arithmetic objects, such as elliptic curves.
这个研究项目涉及丢番图逼近和数的几何。丢番图近似处理近似的真实的号码由有理数和问题的分类,给定的号码作为不合理的,代数,或超越。 丢番图方程是一组整数系数的代数方程,求解该方程组需要求整数解。数的几何学涉及使用几何概念来解决数论中的问题,通常通过整数方程的解。数学的基本问题之一是求给定多项式方程的解。这些问题的难度取决于多项式的形状,更取决于人们正在寻找什么样的解决方案。找到作为多项式方程的解的复数是一项相对容易的任务。然而,寻找多项式方程的整数解是一个更加微妙和深入的问题,是数论的焦点。 本研究计划旨在扩阔及深化这一基础领域的知识,研究丢番图方程积分解的一般计数问题及其应用。PI将通过将古典分析技术与解析数论和算术几何的现代应用相结合来发展方法论的进步,以有效和明确地解决一些重要和长期存在的丢番图问题。本文还研究了丢番图方程积分解的分布。该项目的成果预计将导致更好地理解某些算术对象的几何和分析特性,如椭圆曲线。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shabnam Akhtari其他文献

Minkowski’s theorem on independent conjugate units
  • DOI:
    10.1007/s40879-017-0131-y
  • 发表时间:
    2017-02-10
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Shabnam Akhtari;Jeffrey D. Vaaler
  • 通讯作者:
    Jeffrey D. Vaaler

Shabnam Akhtari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shabnam Akhtari', 18)}}的其他基金

Problems in the Geometry of Numbers and Diophantine Analysis
数几何问题和丢番图分析
  • 批准号:
    2327098
  • 财政年份:
    2023
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Standard Grant
Problems in the Geometry of Numbers and Diophantine Analysis
数几何问题和丢番图分析
  • 批准号:
    2001281
  • 财政年份:
    2020
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Oregon Number Theory Days
合作研究:俄勒冈数论日
  • 批准号:
    1719576
  • 财政年份:
    2017
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Studying classical inflammatory and repair neutrophils in cardiovascular system using novel in vivo imaging approaches
使用新型体内成像方法研究心血管系统中的经典炎症和修复中性粒细胞
  • 批准号:
    469043
  • 财政年份:
    2022
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Operating Grants
CAREER: New Synthetic Approaches to Engineering Topology: from Quantum Many-Body Rydberg Atom Arrays to Classical Mechanical Networks
职业:工程拓扑的新综合方法:从量子多体里德伯原子阵列到经典机械网络
  • 批准号:
    1945031
  • 财政年份:
    2020
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Continuing Grant
Algebraic and computational approaches for classical and quantum systems
经典和量子系统的代数和计算方法
  • 批准号:
    DP180101040
  • 财政年份:
    2018
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Discovery Projects
Analysis of classical solutions based on numerical approaches in superstring field theory
基于超弦场论数值方法的经典解分析
  • 批准号:
    25800134
  • 财政年份:
    2013
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
CAREER: New approaches to classical knot invariants
职业:经典结不变量的新方法
  • 批准号:
    1054450
  • 财政年份:
    2011
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Continuing Grant
SIGNALING BY NON-CLASSICAL LIGANDS OF ESTROGEN RECEPTOR NOVEL APPROACHES TO DET
雌激素受体非经典配体发出的信号检测新方法
  • 批准号:
    8168088
  • 财政年份:
    2010
  • 资助金额:
    $ 14.2万
  • 项目类别:
SIGNALING BY NON-CLASSICAL LIGANDS OF ESTROGEN RECEPTOR NOVEL APPROACHES TO DET
雌激素受体非经典配体的信号传导检测新方法
  • 批准号:
    7959425
  • 财政年份:
    2009
  • 资助金额:
    $ 14.2万
  • 项目类别:
SIGNALING BY NON-CLASSICAL LIGANDS OF ESTROGEN RECEPTOR NOVEL APPROACHES TO DET
雌激素受体非经典配体的信号传导检测新方法
  • 批准号:
    7725057
  • 财政年份:
    2008
  • 资助金额:
    $ 14.2万
  • 项目类别:
SIGNALING BY NON-CLASSICAL LIGANDS OF ESTROGEN RECEPTOR NOVEL APPROACHES TO DET
雌激素受体非经典配体发出的信号检测新方法
  • 批准号:
    7610002
  • 财政年份:
    2007
  • 资助金额:
    $ 14.2万
  • 项目类别:
SIGNALING BY NON-CLASSICAL LIGANDS OF ESTROGEN RECEPTOR NOVEL APPROACHES TO DET
雌激素受体非经典配体的信号传导检测新方法
  • 批准号:
    7381384
  • 财政年份:
    2006
  • 资助金额:
    $ 14.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了