Quantum Many Body Control and Metrology with an Atom-Light Interface

具有原子光接口的量子多体控制和计量

基本信息

  • 批准号:
    1607125
  • 负责人:
  • 金额:
    $ 53.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

At its core, technology is concerned with the design and control of physical systems (devices) that can perform desired tasks. The more complex the device, the greater the likelihood that it will consist of many interconnected parts, as is the case, for example, with the hardware in a computer. Physicists have long known that the behavior of interconnected systems will change in fundamental ways when the entire network (nodes and interconnects) is governed by the laws of quantum mechanics, and more recent work has shown that this allows for dramatic improvements in the performance of computers, communication networks, and sensors. Building and operating quantum devices of this sort remains a grand challenge for modern science. This project will contribute by developing a quantum interface that can connect distant quantum systems. The main goal is to use laser light, first to connect and "entangle" the quantum states of atoms confined in a "trap" made of laser light, and subsequently to perform a quantum limited measurement on them. Ensembles of atoms are used in the most precise sensors of time (atomic clocks), of rotation and acceleration (inertial sensors), and of magnetic fields. The principal investigator and others have demonstrated that a quantum interface can be used to suppress the intrinsic quantum uncertainty of measurement (a phenomenon known as "squeezing"), and thus to improve the precision of such atomic sensors beyond the "standard" limit. This project seeks to increase the amount of squeezing that can be generated by making optimal use of the internal structure of the atoms, with the goal of boosting measurement sensitivity by an additional order of magnitude. A secondary goal is to explore a version of the atom-light quantum interface where the light is guided by an optical nanofiber and overlaps with atoms trapped close to its surface. This geometry is far more compact and has the potential to operate as a quantum node in an optical fiber based network.Quantum control on all scales, from single particles to complex many body systems, is a grand challenge for the second century of quantum mechanics. Over the past decade there has been substantial progress towards this goal, including significant advances in real-world technical capabilities. As a result, non-trivial quantum control has become routine in experiments ranging from quantum metrology to analog quantum simulation and rudimentary digital quantum computing. The goal of this project is to contribute new ideas and capabilities in the areas of quantum many body control and quantum metrology. The context is that of a Cs atomic ensemble, driven by magnetic fields and coupled to a quantized light field for the purpose of generating entanglement and performing quantum limited measurements. Two distinct versions will be studied: a "free-space" geometry with atoms in a dipole trap coupled to a paraxial probe beam, and a "nanofiber" geometry with atoms trapped and probed by evanescent fields around an optical nanofiber. The principal investigator brings expertise in internal state control of complex atoms that can significantly enhance the entangling power of the atom-light interface. A common measure of entangling power is the spin squeezing generated by quantum backaction when measuring the collective atomic spin. A preliminary exploration indicates that squeezing can be increased from a baseline of ~3dB to as much as 8dB through optimal control of the atomic internal state, reaching a level comparable to cavity enhanced experiments. The nanofiber platform is less developed, but short-circuits some of the limitations that diffraction imposes on atom-light coupling in free space, and has the potential to be more compact, less complex, and far more robust than cavity-enhanced setups.
技术的核心是设计和控制能够执行所需任务的物理系统(设备)。设备越复杂,它由许多相互连接的部件组成的可能性就越大,就像计算机中的硬件一样。物理学家早就知道,当整个网络(节点和互连)受量子力学定律支配时,相互连接的系统的行为将从根本上发生变化,最近的工作表明,这使得计算机、通信网络和传感器的性能得到了显著改善。构建和操作这种量子设备对现代科学来说仍然是一个巨大的挑战。这个项目将通过开发一个量子接口来连接遥远的量子系统。主要目标是使用激光,首先连接和“纠缠”被限制在由激光制成的“陷阱”中的原子的量子态,然后对它们进行量子限制测量。最精确的时间传感器(原子钟)、旋转和加速度传感器(惯性传感器)以及磁场传感器都使用原子集合。首席研究员和其他人已经证明,量子界面可以用来抑制测量的内在量子不确定性(一种被称为“挤压”的现象),从而提高这种原子传感器的精度,使其超过“标准”极限。该项目旨在通过优化利用原子的内部结构来增加压缩量,目标是将测量灵敏度提高一个额外的数量级。第二个目标是探索原子-光量子界面的一个版本,其中光由光学纳米纤维引导,并与被困在其表面附近的原子重叠。这种几何结构要紧凑得多,并且有可能在基于光纤的网络中作为量子节点运行。从单粒子到复杂的多体系统的所有尺度上的量子控制,是量子力学第二个世纪的巨大挑战。在过去的十年中,这一目标取得了重大进展,包括现实世界技术能力的重大进步。因此,非平凡量子控制在从量子计量到模拟量子模拟和基本数字量子计算的实验中已经成为常规。该项目的目标是在量子多体控制和量子计量领域贡献新的想法和能力。背景是Cs原子系综,由磁场驱动并耦合到量子化光场,以产生纠缠和执行量子限制测量。将研究两种不同的版本:一种是“自由空间”几何,原子在偶极阱中与近轴探测光束耦合,另一种是“纳米纤维”几何,原子被光学纳米纤维周围的倏逝场捕获和探测。首席研究员带来了复杂原子内部状态控制方面的专业知识,可以显着提高原子-光界面的纠缠能力。在测量集体原子自旋时,量子反作用产生的自旋压缩是测量纠缠力的常用方法。初步研究表明,通过对原子内部状态的优化控制,可以将压缩从~3dB的基线提高到8dB,达到与腔增强实验相当的水平。纳米纤维平台还不太发达,但它克服了衍射对自由空间中原子-光耦合的一些限制,并且有可能比腔增强装置更紧凑、更简单、更健壮。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Poul Jessen其他文献

Poul Jessen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Poul Jessen', 18)}}的其他基金

Collaborative Research: Advances in Quantum Control and Noise Mitigation on A Highly Accurate Testbed
合作研究:高精度测试台上量子控制和噪声抑制的进展
  • 批准号:
    2210018
  • 财政年份:
    2022
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Standard Grant
Quantum Feedback, Closed-Loop Magnetometry, and Quantum Nonlinear Dynamics at the Quantum/Classical Boundary
量子/经典边界的量子反馈、闭环磁力测量和量子非线性动力学
  • 批准号:
    1912417
  • 财政年份:
    2019
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Quantum Complexity, Chaos, and Implications for Analog Quantum Simulation
合作研究:量子复杂性、混沌以及对模拟量子模拟的影响
  • 批准号:
    1820679
  • 财政年份:
    2018
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Unified Approach to Quantum Tomography, Open Systems Control and Quantum Simulation
合作研究:量子断层扫描、开放系统控制和量子模拟的统一方法
  • 批准号:
    1521439
  • 财政年份:
    2015
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Continuing Grant
A Stronger Atom-Light Interface and Enhanced Spin Squeezing Through Quantum Control
更强的原子光界面和通过量子控制增强的自旋挤压
  • 批准号:
    1306171
  • 财政年份:
    2013
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Continuing Grant
Expanding the Toolbox for Quantum Control of Atomic Qudits
扩展原子量子控制的工具箱
  • 批准号:
    1212308
  • 财政年份:
    2012
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Continuing Grant
Collective Spin Control by Quantum Coherent Optical Feedback
通过量子相干光反馈进行集体自旋控制
  • 批准号:
    0969371
  • 财政年份:
    2010
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Quantum Control of Qudits and Quantum Transport in Optical Lattics
合作研究:光晶格中Qudits的量子控制和量子输运
  • 批准号:
    0903930
  • 财政年份:
    2009
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Continuing Grant
Quantum Control of Single and Collective Spin Systems
单自旋和集体自旋系统的量子控制
  • 批准号:
    0653631
  • 财政年份:
    2007
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: High Fidelity Gates and Qubit Addressing for an Optical Lattice Quantum Processor
合作研究:光学晶格量子处理器的高保真门和量子位寻址
  • 批准号:
    0555673
  • 财政年份:
    2006
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Continuing Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
  • 批准号:
    2300172
  • 财政年份:
    2024
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Continuing Grant
Towards a practical quantum advantage: Confronting the quantum many-body problem using quantum computers
迈向实用的量子优势:使用量子计算机应对量子多体问题
  • 批准号:
    EP/Y036069/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Research Grant
Understanding spectral statistics and dynamics in strongly-interacting quantum many-body systems
了解强相互作用量子多体系统中的光谱统计和动力学
  • 批准号:
    EP/X042812/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Fellowship
CAREER: Quantum Information Theory of Many-body Physics
职业:多体物理的量子信息论
  • 批准号:
    2337931
  • 财政年份:
    2024
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Continuing Grant
Elements: Embedding Framework for Quantum Many-Body Simulations
元素:量子多体模拟的嵌入框架
  • 批准号:
    2310582
  • 财政年份:
    2023
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Standard Grant
Geometric approaches to quantum many body problems
量子多体问题的几何方法
  • 批准号:
    DE230100829
  • 财政年份:
    2023
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Discovery Early Career Researcher Award
INTERACTIVE DYNAMICS OF MANY-BODY QUANTUM SYSTEMS
多体量子系统的交互动力学
  • 批准号:
    EP/X030881/1
  • 财政年份:
    2023
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Research Grant
Mathematical methods for quantum many-body systems
量子多体系统的数学方法
  • 批准号:
    2895294
  • 财政年份:
    2023
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Studentship
Many-Body Theory of Nonlinear Responses in Topological Quantum Materials
拓扑量子材料非线性响应的多体理论
  • 批准号:
    2889795
  • 财政年份:
    2023
  • 资助金额:
    $ 53.99万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了