CDS&E: Enabling Time-critical Decision-support for Disaster Response and Structural Engineering through Automated Visual Data Analytics
CDS
基本信息
- 批准号:1608762
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
After a disaster, teams of trained engineers are charged with the task of collecting perishable data. These building reconnaissance teams collect data and information from the buildings that experienced the disaster, including photographs and measurements in the region. This information is collected to better understand the consequences of these events, and to improve the design of future structures. An enormous amount of images and videos is generated in just a few days, and to gather the most critical information in the time allowed, the engineers on these teams must quickly make daily decisions on where and what data to collect to achieve their mission. This research, which harnesses powerful computer vision methods to address real world civil engineering problems, aims to develop efficient methods to analyze and organize the collected images in the field, thereby enabling teams to collect the most useful data for building resilient communities worldwide. The project will leverage decades of experience in field missions from project researchers and domestic and international collaborators. A diverse set of students will be engaged in interdisciplinary research with international opportunities.The application of computer vision methods to address disaster response and structural engineering problems is not simple or straightforward. This project will systematically build the knowledge needed for their successful implementation in time-critical situations. Engineers with significant field-mission experience will annotate images. These records will provide the basis for determining the visual contents needed to make decisions in the field and how the contents are spatially interconnected in the images. This forms the foundation for determining the prior knowledge that can and must be included in the deep neural network structures to facilitate rapid decision-making in the field. To quantitatively evaluate the approach, a reconnaissance testbed will be established using a diverse set of images from past data collection missions. The computational time and accuracy will be measured and documented to establish a detailed profile of the classification results. This knowledge will enable the team collecting data during a reconnaissance mission to maximize the value of the data they collect by ensuring that they can successfully perform a given task, in a certain amount of time, applied to a suite of images. This capability will provide the evidence on which to base recommendations for further investigations and/or changes to design guidelines.
灾难发生后,训练有素的工程师团队负责收集易损坏的数据。这些建筑物侦察队从经历灾难的建筑物收集数据和信息,包括该地区的照片和测量结果。收集这些信息是为了更好地了解这些事件的后果,并改进未来结构的设计。在短短几天内就生成了大量的图像和视频,为了在允许的时间内收集最关键的信息,这些团队的工程师必须快速做出日常决策,确定在何处收集哪些数据,以完成他们的使命。这项研究利用强大的计算机视觉方法来解决真实的世界土木工程问题,旨在开发有效的方法来分析和组织现场收集的图像,从而使团队能够收集最有用的数据,用于在全球范围内建立弹性社区。该项目将利用项目研究人员以及国内外合作者数十年的实地任务经验。不同的学生将参与跨学科研究,并有国际机会。计算机视觉方法在解决灾害响应和结构工程问题中的应用并不简单或直接。该项目将系统地积累必要的知识,以便在时间紧迫的情况下成功执行这些建议。具有丰富实地任务经验的工程师将对图像进行注释。这些记录将为确定在现场做出决定所需的视觉内容以及这些内容在图像中如何空间互连提供基础。这构成了确定可以并且必须包含在深度神经网络结构中的先验知识的基础,以促进该领域的快速决策。为了定量评估这种方法,将使用过去数据收集任务的各种图像建立一个侦察试验台。将对计算时间和准确性进行测量和记录,以建立分类结果的详细概况。这些知识将使在侦察使命期间收集数据的团队能够通过确保他们能够在一定的时间内成功执行应用于一套图像的给定任务来最大化他们收集的数据的价值。这一能力将提供证据,作为进一步调查和/或修改设计准则的建议的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shirley Dyke其他文献
Effective structural impact detection and localization using convolutional neural network and Bayesian information fusion with limited sensors
- DOI:
10.1016/j.ymssp.2024.112074 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Yuguang Fu;Zixin Wang;Amin Maghareh;Shirley Dyke;Mohammad Jahanshahi;Adnan Shahriar;Fan Zhang - 通讯作者:
Fan Zhang
Transfer-AE: A novel autoencoder-based impact detection model for structural digital twin
迁移自编码器:一种用于结构数字孪生的新型基于自动编码器的影响检测模型
- DOI:
10.1016/j.asoc.2024.112174 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:6.600
- 作者:
Chengjia Han;Zixin Wang;Yuguang Fu;Shirley Dyke;Adnan Shahriar - 通讯作者:
Adnan Shahriar
磁流变阻尼器的半主动控制及实时混合模拟试验研究
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
李歆;吕西林;Shirley Dyke - 通讯作者:
Shirley Dyke
Real-time rapid leakage estimation for deep space habitats using exponentially-weighted adaptively-refined search
- DOI:
10.1016/j.actaastro.2022.12.003 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:
- 作者:
Mahindra Rautela;Motahareh Mirfarah;Christian E. Silva;Shirley Dyke;Amin Maghareh;S. Gopalakrishnan - 通讯作者:
S. Gopalakrishnan
Shirley Dyke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shirley Dyke', 18)}}的其他基金
IUCRC Planning Grant Purdue University: Center for Visual Structural Expertise for Resilience C-ViSER
IUCRC 规划拨款 普渡大学:复原力视觉结构专业知识中心 C-ViSER
- 批准号:
2310930 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Co-Designed Control and Scheduling Adaptation for Assured Cyber-Physical System Safety and Performance
协作研究:CPS:中:共同设计控制和调度适应,以确保网络物理系统的安全和性能
- 批准号:
2229136 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Elements: Data: Integrating Human and Machine for Post-Disaster Visual Data Analytics: A Modern Media-Oriented Approach
要素:数据:整合人机进行灾后可视化数据分析:现代媒体导向方法
- 批准号:
1835473 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RCN: Research Network in Hybrid Simulation for Multi-Hazard Engineering
RCN:多灾害工程混合仿真研究网络
- 批准号:
1661621 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Active Citizen Engagement to Enable Lifecycle Management of Infrastructure Systems
EAGER:积极的公民参与以实现基础设施系统的生命周期管理
- 批准号:
1645047 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Empowering the Scientific Community with Streaming Data Middleware: Software Integration into Complex Science Environments
合作研究:SI2-SSI:通过流数据中间件为科学界赋能:软件集成到复杂的科学环境中
- 批准号:
1148255 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Workshop: International Workshop on Bio-inspired Methods and Large Scale Structural Monitoring; Tokyo, Japan; July 11-12, 2010
研讨会:仿生方法和大规模结构监测国际研讨会;
- 批准号:
1013175 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Cyber-Physical Co-Design of Wireless Monitoring and Control for Civil Infrastructure
CPS:媒介:协作研究:民用基础设施无线监测和控制的网络物理协同设计
- 批准号:
1035748 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
MRI: Development of Configurable Cyberphysical Instrument for Real-time Hybrid Testin
MRI:开发用于实时混合测试的可配置网络物理仪器
- 批准号:
1028668 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Workshop/Collaborative Research: Vision 2020: An Open Space Technology Workshop on the Future of Earthquake Engineering; St. Louis, Missouri; January 2010
研讨会/合作研究:2020 年愿景:关于地震工程未来的开放空间技术研讨会;
- 批准号:
1004951 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
CPS: Medium: GOALI: Enabling Safe Innovation for Autonomy: Making Publish/Subscribe Really Real-Time
CPS:中:GOALI:实现自主安全创新:使发布/订阅真正实时
- 批准号:
2333120 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Enabling the Accurate Simulation of Multi-Dimensional Core-Level Spectroscopies in Molecular Complexes using Time-Dependent Density Functional Theory
职业:使用瞬态密度泛函理论实现分子复合物中多维核心级光谱的精确模拟
- 批准号:
2337902 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Inoculation vs. education: the role of real time alerts and end-user overconfidence
EAGER:DCL:SaTC:实现跨学科协作:接种与教育:实时警报和最终用户过度自信的作用
- 批准号:
2210198 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CNS Core: Small: Enabling Real-time, Scalable and Secure Collaborative Intelligence on the Edge
CNS 核心:小型:在边缘实现实时、可扩展且安全的协作智能
- 批准号:
2140346 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Real-Time eXperiment Interface - Enabling closed-loop biological experiment control
实时实验接口 - 实现闭环生物实验控制
- 批准号:
10391430 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Real-Time eXperiment Interface - Enabling closed-loop biological experiment control
实时实验接口 - 实现闭环生物实验控制
- 批准号:
10598017 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
UK Fashion & Textiles: Data-driven platform, enabling manufacturing supply chain real-time decision-making, effective track & trace & sustainability
英国时尚
- 批准号:
92979 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
SBIR Phase I: Enabling Real-Time AI on End Devices through Compression-Compilation Co-Design
SBIR 第一阶段:通过压缩编译协同设计在终端设备上启用实时人工智能
- 批准号:
2104298 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
A platform enabling creative writers to market their work and build an audience of subscribers, providing many with a regular income for the first time.
该平台使创意作家能够推销他们的作品并建立订阅者受众,从而首次为许多人提供固定收入。
- 批准号:
10009563 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Responsive Strategy and Planning
CAREER: Enabling grid-aware aggregation and real-time control of distributed energy resources in electric power distribution systems
职业:实现配电系统中分布式能源的网格感知聚合和实时控制
- 批准号:
2047306 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant