Advanced Electrochemistry of Na-ion Battery Cathodes Through Chemically Controlled Materials Synthesis

通过化学控制材料合成实现钠离子电池阴极的先进电化学

基本信息

  • 批准号:
    1609272
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Non-Technical AbstractIntercalation reactions lie at the heart of the operation mechanism of lithium-ion battery, which remains the most used energy storage device for portable electronics and electric cars. Intercalation is usually a reversible process that involves the introduction of a guest species into a host electrode material. The realization that lithium is a limited resource, which potentially can result in a significant increase in the cost of lithium-ion batteries, has shifted research directions towards investigation of alternate intercalation systems, such as sodium-ion batteries. However the larger size and higher weight limits intercalation and diffusion of sodium ions through common electrode materials, compared to lithium ion. This results in significant electrode degradation (thereby resulting in capacity loss after the first cycle and reduced cycle life) and limitations in operation at high current rates. With support from the Solid State and Materials Chemistry program of the Division of Materials Research, this project focuses on addressing these shortcomings through chemical pre-intercalation of the specific types and amounts of inorganic ions. The proposed work has the potential to enable the development of sodium-ion battery cathodes that can be used to replace current lithium-ion batteries, providing sustainable energy storage that is cheaper, reliable, and environmentally friendly, contributing to the development of next-generation energy storage systems for transportation, grid-storage and other renewable energy applications. The project offers an excellent opportunity to engage senior undergraduate and graduate students in masters and doctoral-level research in the field of Materials Science and Engineering and its broader impact on Materials Chemistry and Electrochemistry. The principal investigator plans to integrate the results of this research in the course on materials for energy storage applications. This project enhances the dissemination of knowledge to a broad research community and general public through presentations at National/International conferences, refereed journal publications and demonstrations at science events.Technical AbstractChemical pre-intercalation is a wet chemistry approach, in which the inorganic ions are inserted into the crystal structure of the electrode material in a solution followed by the formation of a gel and/or sol, or another form of a precipitate, with inorganic ions being 'trapped' in the structure of a solid material. The goal of this proposed research is to test the hypothesis that high capacity, long cycle life and high power can be achieved in Na-ion battery electrodes by introducing specific types and amounts of chemically pre-intercalated ions, which enables materials with high specific capacity, enhanced structural stability and fast ionic diffusion. Vanadium oxide, a material with rich crystal chemistry, structural flexibility and morphological architectures, is chosen as a host structure for chemical pre-intercalation. The project seeks a systematic understanding of synthesis - structure - performance relationships for chemically pre-intercalated vanadium oxide electrodes in Na-ion batteries. Electrochemical properties of the synthesized materials are evaluated by cyclic voltammetry, galvanostatic discharge/charge cycling, rate capability experiments and impedance spectroscopy measurements. The research team plans to determine how changes in the synthesis parameters affect electrochemical performance with the aim to understand fundamental phenomena related to materials chemistry and structure that may lead to larger amount of the stored charge, faster ion and electron transport, and excellent stability during reversible cycling of sodium ions.
摘要插层反应是锂离子电池运行机制的核心,锂离子电池是便携式电子设备和电动汽车中使用最多的储能装置。插入通常是一个可逆过程,涉及将客体物质引入主电极材料。认识到锂是一种有限的资源,这可能会导致锂离子电池成本的显著增加,研究方向已经转向研究替代插层系统,如钠离子电池。然而,与锂离子相比,更大的尺寸和更高的重量限制了钠离子通过普通电极材料的插入和扩散。这将导致显著的电极退化(从而导致第一次循环后的容量损失和循环寿命缩短),并限制在高电流速率下的操作。在材料研究部固态与材料化学项目的支持下,该项目致力于通过化学预插特定类型和数量的无机离子来解决这些缺点。提出的工作有可能使钠离子电池阴极的发展成为可能,可用于取代目前的锂离子电池,提供更便宜、可靠、环保的可持续能源存储,有助于下一代交通、电网存储和其他可再生能源应用的能源存储系统的发展。该项目提供了一个极好的机会,让大四本科生和研究生参与材料科学与工程领域的硕士和博士水平的研究,并对材料化学和电化学产生更广泛的影响。首席研究员计划将这项研究成果整合到能源存储应用材料课程中。该项目通过在国家/国际会议上发表演讲、在期刊出版物上发表评论和在科学活动上进行示范,加强向广泛的研究界和一般公众传播知识。化学预插层是一种湿化学方法,其中无机离子被插入到溶液中电极材料的晶体结构中,随后形成凝胶和/或溶胶,或其他形式的沉淀物,无机离子被“捕获”在固体材料的结构中。本研究的目的是验证一个假设,即通过引入特定类型和数量的化学预插离子,可以在na离子电池电极中实现高容量、长循环寿命和高功率,从而使材料具有高比容量、增强结构稳定性和快速离子扩散。氧化钒是一种具有丰富晶体化学性质、结构柔韧性和形态结构的材料,被选择作为化学预插层的主体结构。该项目寻求对钠离子电池中化学预插层氧化钒电极的合成-结构-性能关系的系统理解。通过循环伏安法、恒流放电/充电循环、速率性能实验和阻抗谱测量等方法对合成材料的电化学性能进行了评价。研究小组计划确定合成参数的变化如何影响电化学性能,目的是了解与材料化学和结构相关的基本现象,这些现象可能导致更多的存储电荷,更快的离子和电子传输,以及钠离子可逆循环过程中的优异稳定性。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chemical preintercalation synthesis approach for the formation of new layered tungsten oxides
用于形成新型层状氧化钨的化学预插层合成方法
  • DOI:
    10.1007/s10853-022-07190-z
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Clites, Mallory;Blickley, Adam;Cullen, David A.;Pomerantseva, Ekaterina
  • 通讯作者:
    Pomerantseva, Ekaterina
Phase transformation and electrochemical charge storage properties of vanadium oxide/carbon composite electrodes synthesized via integration with dopamine
与多巴胺结合合成的氧化钒/碳复合电极的相变和电化学电荷存储性能
  • DOI:
    10.1111/jace.18502
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Andris, Ryan;Averianov, Timofey;Pomerantseva, Ekaterina
  • 通讯作者:
    Pomerantseva, Ekaterina
Improving Electronic Conductivity of Layered Oxides through the Formation of Two-Dimensional Heterointerface for Intercalation Batteries
  • DOI:
    10.1021/acsaem.0c00274
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mallory Clites;R. Andris;D. Cullen;K. More;E. Pomerantseva
  • 通讯作者:
    Mallory Clites;R. Andris;D. Cullen;K. More;E. Pomerantseva
Composite Li-ion battery cathodes formed via integration of carbon nanotubes or graphene nanoplatelets into chemical preintercalation synthesis of bilayered vanadium oxides
  • DOI:
    10.1016/j.jallcom.2022.163929
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    T. Averianov;E. Pomerantseva
  • 通讯作者:
    T. Averianov;E. Pomerantseva
MXene-Derived Bilayered Vanadium Oxides with Enhanced Stability in Li-Ion Batteries
  • DOI:
    10.1021/acsaem.0c01906
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Ridley;Cyra Gallano;R. Andris;C. Shuck;Y. Gogotsi;E. Pomerantseva
  • 通讯作者:
    P. Ridley;Cyra Gallano;R. Andris;C. Shuck;Y. Gogotsi;E. Pomerantseva
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ekaterina Pomerantseva其他文献

Chemical preintercalation of magnesium ions into ⍺-MoOsub3/sub structure for improved electrochemical stability in Li-ion cells
镁离子化学预嵌入到⍺-MoO₃结构中以提高锂离子电池的电化学稳定性
  • DOI:
    10.1016/j.jallcom.2024.175954
  • 发表时间:
    2024-11-15
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Darrell Omo-Lamai;Xinle Zhang;Ryan Andris;Michael J. Zachman;Ekaterina Pomerantseva
  • 通讯作者:
    Ekaterina Pomerantseva

Ekaterina Pomerantseva的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ekaterina Pomerantseva', 18)}}的其他基金

Unveiling relationships between synthesis, structure and nonaqueous ion cycling in chemically preintercalated layered oxides
揭示化学预插层状氧化物的合成、结构和非水离子循环之间的关系
  • 批准号:
    2106445
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CAREER: Controlling two-dimensional heterointerface in layered oxides for electrodes with advanced electrochemical properties
职业:控制具有先进电化学性能的电极层状氧化物中的二维异质界面
  • 批准号:
    1752623
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Collaborative Research: High-performance nanowire cathodes with stabilized microporous tunnels for Na-ion batteries
合作研究:用于钠离子电池的具有稳定微孔隧道的高性能纳米线阴极
  • 批准号:
    1604483
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Manganese Oxide Nanowire Membranes for Water Desalination
用于海水淡化的氧化锰纳米线膜
  • 批准号:
    1635233
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant

相似海外基金

AI Assisted Continuous Flow Electrochemistry for Pharmaceutical Manufacture
人工智能辅助制药制造的连续流电化学
  • 批准号:
    LP230100436
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Linkage Projects
Electrochemistry as a Design Tool for Colloidal Syntheses of Polyhedral Metal Nanoparticles
电化学作为多面体金属纳米粒子胶体合成的设计工具
  • 批准号:
    2406130
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Exploring the mycobacterial respiratory supercomplex with Fourier-transformed electrochemistry and cryogenic electron microscopy
利用傅里叶变换电化学和低温电子显微镜探索分枝杆菌呼吸超级复合物
  • 批准号:
    2885393
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Studentship
FMSG: Bio: Merging electrochemistry and metabolic engineering for carbon neutral ammonia production
FMSG:生物:融合电化学和代谢工程以生产碳中性氨
  • 批准号:
    2328100
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Single-particle electrochemistry to identify fundamental barriers to magnesium ion intercalation in transition metal oxides
单粒子电化学确定过渡金属氧化物中镁离子嵌入的基本障碍
  • 批准号:
    2312359
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
MPS-Ascend: CRITICAL METALS FROM COMPLEX WASTE STREAMS: AN ELECTROCHEMISTRY ROADMAP TO SELECTIVE EXTRACTION
MPS-Ascend:复杂废物流中的关键金属:选择性萃取的电化学路线图
  • 批准号:
    2212962
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Fellowship Award
CAREER: CAS-Climate: Molecular Physical Electrochemistry at Interfaces - Visualizing and Modeling Charge Transfer at the Anode and Cathode
职业:CAS-Climate:界面处的分子物理电化学 - 阳极和阴极的电荷转移可视化和建模
  • 批准号:
    2142821
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Ring-opening/1,3-difunctionalization of Cyclopropanes Enabled by Copper Catalysis and Electrochemistry
铜催化和电化学实现环丙烷的开环/1,3-双官能化
  • 批准号:
    2154501
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Fully integrated biosensing platform-integrating blood/plasma separation, digital microfluidics, and electrochemistry
全集成生物传感平台——集成血液/血浆分离、数字微流体和电化学
  • 批准号:
    570448-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Alliance Grants
Surface and Microfluidic Electrochemistry
表面和微流体电化学
  • 批准号:
    RGPIN-2017-04045
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了