Collaborative Research: Approximate Computing on Real World Data Using Representation and Coding

协作研究:使用表示和编码对现实世界数据进行近似计算

基本信息

  • 批准号:
    1609605
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2018-10-31
  • 项目状态:
    已结题

项目摘要

The diminishing benefits from traditional transistor scaling has coincided with an overwhelming increase in the rate of data generation. Expert analyses show that in 2011, the amount of generated data surpassed 1.8 zeta bytes and will increase by a factor of 50 until 2020. To overcome these challenges, both the semiconductor industry and the research community are exploring new avenues in computing. Two of the promising approaches are acceleration and approximation. Among accelerators, Graphic Processing Units provide significant compute capabilities. Graphic Processing Units, originally designed to accelerate graphics functions, now are processing large amounts of real-world data that are collected from sensors, radar, environment, financial markets, and medical devices. As Graphic Processing Units play a major role in accelerating many classes of applications, improving their performance and energy efficiency has become imperative. This project leverages the fact that many applications that benefit from Graphic Processing Units are amenable to imprecise computation. This characteristic provides an opportunity to devise approximation techniques that trade small losses in the output quality for significant gains in performance and energy efficiency. This project aims to exploit this opportunity and develop a comprehensive framework for approximation in Graphic Processing Units along with effective quality control mechanisms based on coding theory. Energy efficiency is arguably the biggest challenge of the computing industry. To maintain the nation's economic leadership in this industry, it is vital to develop solutions, such as this project, that address the fundamental challenges of energy-efficient computing. The computing industry has reached an era in which many of the innovative techniques, such as this work, crosses the boundary of multiple disciplines, including computer architecture, information theory, and signal processing. Thus, it is imperative to educate a workforce that not only deeply understands multiple disciples, but also can innovate across their boundaries. This project provides a foundation for such education and research. This project will produce benchmarks, tools and general infrastructure. These artifacts will be made publicly available and will be integrated in the Georgia Tech and Harvard curricula. To transfer these technologies, the principle investigators have established close contacts with several companies. Besides the customary routes academics use to disseminate results, the principle investigator will continue organizing workshops on approximate computing. The principle investigator is also coauthoring a book on approximate computing, which will include results from this project. The investigators are committed to diversity and inclusion of undergraduate, underrepresented, and high school students and are currently mentoring students from all groups that will continue throughout this project. This project will first develop an accelerated architecture for Graphic Processing Units, which leverage an approximate algorithmic transformation for faster and more energy efficient execution. The core idea is to use neural models to learn how a region of code behaves and replace the region with a hardware accelerator that is tightly integrated within the many cores of the Graphic Processing Units. Second, inspired by Shannon's work and the success of random codes in providing reliable communication over noisy channels, this work will devise quality control solutions that utilize coding techniques to reduce the imprecision. The code is implicit in a sense that whenever an approximate output must be improved, its correlation with available exact outputs is exploited for constructing and decoding the code. Third, the project will study mechanisms that leverage the inherent similarity and predictability in the real-world data to address the memory bottlenecks in Graphic Processing Units. The main idea is to predict the values of a data load operation when it misses in the local on-chip cache and continue the computation without waiting for the long-latency response from the off-chip memory. To perform effective prediction, this project will develop multi-regime adaptive nonlinear time-varying dynamical models for the input data using our new theories of model matching.
传统晶体管缩放带来的好处越来越少,而数据生成速度却在以压倒性的速度增长。专家分析显示,2011年产生的数据量超过1.8 zeta字节,到2020年将增加50倍。为了克服这些挑战,半导体行业和研究团体都在探索计算的新途径。两种有希望的方法是加速和近似。在加速器中,图形处理单元提供了重要的计算能力。图形处理单元最初是为了加速图形功能而设计的,现在正在处理从传感器、雷达、环境、金融市场和医疗设备收集的大量实际数据。由于图形处理单元在加速许多类别的应用程序中发挥着重要作用,因此提高其性能和能源效率已成为当务之急。这个项目利用了这样一个事实,即许多受益于图形处理单元的应用程序都可以进行不精确的计算。这一特性为设计近似技术提供了机会,这种近似技术可以在输出质量上损失很小,从而在性能和能源效率上获得显著收益。本项目旨在利用这一机会,开发一个全面的图形处理单元近似框架,以及基于编码理论的有效质量控制机制。能源效率可以说是计算机行业面临的最大挑战。为了保持国家在这个行业的经济领导地位,制定解决方案至关重要,比如这个项目,解决节能计算的基本挑战。计算机行业已经进入了这样一个时代,在这个时代,许多创新技术,比如这项工作,跨越了多个学科的边界,包括计算机体系结构、信息理论和信号处理。因此,教育一个不仅能深刻理解多个门徒,而且能跨边界创新的劳动力是势在必行的。该项目为此类教育和研究提供了基础。该项目将产生基准、工具和一般基础设施。这些文物将被公开,并将被整合到乔治亚理工学院和哈佛大学的课程中。为了转让这些技术,主要研究人员与几家公司建立了密切联系。除了学术界用来传播结果的惯常途径外,主要研究者将继续组织关于近似计算的研讨会。主要研究者还与人合著了一本关于近似计算的书,其中将包括这个项目的结果。研究人员致力于本科生、未被充分代表的学生和高中生的多样性和包容性,目前正在指导所有群体的学生,这些学生将继续贯穿整个项目。该项目将首先为图形处理单元开发一个加速架构,该架构利用近似算法转换来实现更快、更节能的执行。核心思想是使用神经模型来学习代码区域的行为,并用硬件加速器替换该区域,该加速器紧密集成在图形处理单元的许多核心中。其次,受香农的工作和随机码在嘈杂信道上提供可靠通信的成功的启发,这项工作将设计利用编码技术来减少不精确的质量控制解决方案。从某种意义上说,代码是隐含的,每当必须改进近似输出时,就会利用其与可用精确输出的相关性来构建和解码代码。第三,该项目将研究利用真实世界数据中固有的相似性和可预测性来解决图形处理单元的内存瓶颈的机制。其主要思想是,当数据加载操作在本地片上缓存中丢失时,预测数据加载操作的值,并继续计算,而无需等待片外内存的长延迟响应。为了进行有效的预测,本项目将利用我们新的模型匹配理论,为输入数据开发多域自适应非线性时变动态模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vahid Tarokh其他文献

REFORMA: Robust REinFORceMent Learning via Adaptive Adversary for Drones Flying under Disturbances
REFORMA:通过自适应对手为干扰下飞行的无人机提供强大的强化学习
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao;Haocheng Meng;Shaocheng Luo;Juncheng Dong;Vahid Tarokh;Miroslav Pajic
  • 通讯作者:
    Miroslav Pajic
Region selection in Markov random fields: Gaussian case
  • DOI:
    10.1016/j.jmva.2023.105178
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ilya Soloveychik;Vahid Tarokh
  • 通讯作者:
    Vahid Tarokh
Representation Learning for Extremes
极端情况下的表征学习
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ali Hasan;Yuting Ng;Jose Blanchet;Vahid Tarokh
  • 通讯作者:
    Vahid Tarokh
Neural operators from the Cole–Hopf transformation: Leveraging relations between PDEs for efficient operator learning
来自 Cole–Hopf 变换的神经算子:利用偏微分方程之间的关系进行高效算子学习

Vahid Tarokh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vahid Tarokh', 18)}}的其他基金

Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
  • 批准号:
    2334898
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: Dynamic Spectrum Sharing via Stochastic Optimization
合作研究:SWIFT:通过随机优化实现动态频谱共享
  • 批准号:
    2229468
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Approximate Computing on Real World Data Using Representation and Coding
协作研究:使用表示和编码对现实世界数据进行近似计算
  • 批准号:
    1848810
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER: Limited Communications Demand Control in Power Grid
EAGER:电网中有限的通信需求控制
  • 批准号:
    1548204
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Low Peak to Average Power Multicarrier Signals via Coding: Fundamental Limits and Algorithms
协作研究:通过编码实现低峰值平均功率多载波信号:基本限制和算法
  • 批准号:
    0728572
  • 财政年份:
    2007
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Alan T. Waterman Award
艾伦·T·沃特曼奖
  • 批准号:
    0240625
  • 财政年份:
    2002
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Alan T. Waterman Award
艾伦·T·沃特曼奖
  • 批准号:
    0139398
  • 财政年份:
    2001
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: OAC: Approximate Nearest Neighbor Similarity Search for Large Polygonal and Trajectory Datasets
合作研究:OAC:大型多边形和轨迹数据集的近似最近邻相似性搜索
  • 批准号:
    2313039
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-Tolerance, and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
  • 批准号:
    2231706
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-tolerance and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
  • 批准号:
    2231707
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards the Foundation of Approximate Sampling-Based Exploration in Sequential Decision Making
协作研究:为顺序决策中基于近似采样的探索奠定基础
  • 批准号:
    2323113
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC: Approximate Nearest Neighbor Similarity Search for Large Polygonal and Trajectory Datasets
合作研究:OAC:大型多边形和轨迹数据集的近似最近邻相似性搜索
  • 批准号:
    2313040
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards the Foundation of Approximate Sampling-Based Exploration in Sequential Decision Making
协作研究:为顺序决策中基于近似采样的探索奠定基础
  • 批准号:
    2323112
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC: Approximate Nearest Neighbor Similarity Search for Large Polygonal and Trajectory Datasets
合作研究:OAC:大型多边形和轨迹数据集的近似最近邻相似性搜索
  • 批准号:
    2344585
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Machine Learning-assisted Modeling and Design of Approximate Computing with Generalizability and Interpretability
协作研究:机器学习辅助建模和具有通用性和可解释性的近似计算设计
  • 批准号:
    2202310
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Approximate Computing for Machine Learning Security: Foundations and Accelerator Design
协作研究:SHF:媒介:机器学习安全的近似计算:基础和加速器设计
  • 批准号:
    2212426
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Approximate Computing for Machine Learning Security: Foundations and Accelerator Design
协作研究:SHF:媒介:机器学习安全的近似计算:基础和加速器设计
  • 批准号:
    2212427
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了