Collaborative Research: Probing and Controlling Binding Structure and Electron Transport in Molecular Electronic Devices - A Coordinated Computational and Experimental Study
合作研究:探测和控制分子电子器件中的结合结构和电子传输 - 协调计算和实验研究
基本信息
- 批准号:1609902
- 负责人:
- 金额:$ 18.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract:Non-Technical:Molecular electronics started with the idea of wiring an individual molecule to two metal electrodes, called single-molecule junctions, as an analogy of single electronic components in commercial microelectronic devices to overcome the limit of famous Moore's prediction. In a single molecular junction, perhaps the most elusive factor that influences the electron transport properties lies in the molecule-electrode contact interfaces. Despite continuous experimental achievements and the conceptual simplicity of molecular electronic devices, challenges for their theoretical understanding of the correlation between electron transport and molecular binding structures are still unresolved. Therefore, probing and controlling the structure and dynamics of single-molecule junctions and consequently controlling the molecular transport of these junctions are critical to the development of this field. The project will integrate molecular simulations for the self-assembly and nanocontact dynamics at surface and interface, and experimental mechanics and electron transport measurements of single-molecule junctions. The project will provide a deep understanding of many transition phenomena observed in molecular force and conductance measurements. If successful, the research will have tremendous impact on molecular electronics community and many other areas, such as energy research and molecular force spectroscopy. The education and outreach objective of this proposal is to tightly integrate the research efforts and results with graduate, undergraduate, and K-12 education and to globally disseminate both research and the education outcomes.Technical:Although the electrical conductance and mechanical properties of single-molecule junctions have achieved significant progress over the past decade, challenges of a detailed understanding of molecular binding structures and electron transport, and the structure-force-conductance correlations, are still unresolved. This research will develop a combined molecular simulation and scanning probe microscope break-junction technique to probe and control the structure and dynamics in molecular electronics devices: (1) Performing molecular simulations by using as close as possible the experimental parameters, dynamics of electrode and realistic atomic interactions to understand the binding structure and force measurement in scanning probe experiment; (2) Developing a dual-mode feedback system with AC-coupled high speed amplifier at radio frequency to capture the key transitions of molecular binding sites that induce conductance changes. The experimental data at nanosecond (ns) timescale will be directly compared with molecular simulation results; (3) Using the coordinated molecular simulation and scanning probe break-junction experiment to probe the structure and dynamics of selected benchmark systems under different mode trainings. Multi-variable force-conductance two-dimensional cross-correlation histogram analyses for the force and conductance traces will be performed in experiments and simulations, and the distinct stable configurations of molecular junctions will be identified. The coordinated computational and experimental research project will also provide an interdisciplinary research for students in materials, mechanics, chemistry, electronics, and computational materials science.
摘要:非技术:分子电子学最初的想法是将单个分子连接到两个金属电极上,称为单分子结,作为商业微电子器件中单个电子元件的类比,以克服著名的摩尔预测的限制。在单个分子结中,影响电子传递特性的最难以捉摸的因素可能在于分子-电极接触界面。尽管不断取得实验成果和分子电子器件的概念简单,但他们对电子传递和分子结合结构之间关系的理论理解仍然存在挑战。因此,探测和控制单分子连接的结构和动力学,从而控制这些连接的分子运输对该领域的发展至关重要。该项目将整合自组装和表面和界面纳米接触动力学的分子模拟,以及单分子结的实验力学和电子传递测量。该项目将提供对在分子力和电导测量中观察到的许多过渡现象的深刻理解。如果研究成功,将对分子电子学以及能量研究、分子力谱学等诸多领域产生巨大影响。本提案的教育和推广目标是将研究工作和成果与研究生,本科和K-12教育紧密结合,并在全球传播研究和教育成果。技术方面:虽然单分子结的电导率和机械性能在过去十年中取得了重大进展,但对分子结合结构和电子传递的详细理解以及结构-力-电导率相关性的挑战仍然没有解决。本研究将发展分子模拟与扫描探针显微镜断结相结合的技术来探测和控制分子电子器件的结构和动力学:(1)通过尽可能接近实验参数、电极动力学和真实原子相互作用进行分子模拟,了解扫描探针实验中的结合结构和力测量;(2)开发了一种射频交流耦合高速放大器双模反馈系统,以捕获诱导电导变化的分子结合位点的关键转变。在纳秒(ns)时间尺度下的实验数据将直接与分子模拟结果进行比较;(3)采用协同分子模拟和扫描探针断结实验对所选基准系统在不同模式训练下的结构和动力学特性进行了研究。将在实验和模拟中对力和电导轨迹进行多变量力-电导二维互相关直方图分析,并识别分子结的不同稳定构型。计算与实验的协同研究项目也将为材料、力学、化学、电子和计算材料科学的学生提供跨学科的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongsheng Leng其他文献
emDe novo/em design of a mechano-pharmaceutical screening platform against formation of individual beta-amyloid oligomers
针对单个β-淀粉样蛋白低聚物形成的机械-药物筛选平台的从头设计
- DOI:
10.1016/j.xcrp.2024.102336 - 发表时间:
2024-12-18 - 期刊:
- 影响因子:7.300
- 作者:
Shankar Pandey;Mathias Bogetoft Danielsen;Yuan Xiang;Zhilei Zhang;Grinsun Sharma;Byeong Tak Jeon;Shixi Song;Yitong Hao;Gunan Zhang;Niels Johan Christensen;Kasper Kildegaard Sørensen;Pernille Harris;Pravin Pokhrel;Richard Cunningham;Min-Ho Kim;Yongsheng Leng;Chenguang Lou;Hanbin Mao - 通讯作者:
Hanbin Mao
Yongsheng Leng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongsheng Leng', 18)}}的其他基金
CDS&E: Computational Simulation and Cyber Software Development for Nanoscale Friction
CDS
- 批准号:
1953171 - 财政年份:2020
- 资助金额:
$ 18.2万 - 项目类别:
Standard Grant
I-Corps Teams: Compression and friction properties of lubricants in boundary lubrication
I-Corps 团队:边界润滑中润滑剂的压缩和摩擦特性
- 批准号:
1903211 - 财政年份:2019
- 资助金额:
$ 18.2万 - 项目类别:
Standard Grant
Computational Simulation Studies of Membrane Fouling Mechanisms and Designing New Antifouling Membranes
膜污染机制的计算模拟研究和新型防污膜的设计
- 批准号:
1817394 - 财政年份:2018
- 资助金额:
$ 18.2万 - 项目类别:
Standard Grant
CAREER: Squeezing and Shear Behaviors of Liquid Films in Confined Geometry
职业:受限几何中液膜的挤压和剪切行为
- 批准号:
1149704 - 财政年份:2012
- 资助金额:
$ 18.2万 - 项目类别:
Standard Grant
Multi-Timescale Molecular Simulation Study of Hydration Force, Hydrophobic Interaction and Shear Dynamics in Nanometer Confined Aqueous Systems
纳米受限水体系中水合力、疏水相互作用和剪切动力学的多时间尺度分子模拟研究
- 批准号:
0904287 - 财政年份:2008
- 资助金额:
$ 18.2万 - 项目类别:
Standard Grant
Multi-Timescale Molecular Simulation Study of Hydration Force, Hydrophobic Interaction and Shear Dynamics in Nanometer Confined Aqueous Systems
纳米受限水体系中水合力、疏水相互作用和剪切动力学的多时间尺度分子模拟研究
- 批准号:
0700299 - 财政年份:2007
- 资助金额:
$ 18.2万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 18.2万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412550 - 财政年份:2024
- 资助金额:
$ 18.2万 - 项目类别:
Standard Grant
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
- 批准号:
2230729 - 财政年份:2023
- 资助金额:
$ 18.2万 - 项目类别:
Continuing Grant
Collaborative Research: PM: High-Z Highly Charged Ions Probing Nuclear Charge Radii, QED, and the Standard Model
合作研究:PM:高阻抗高带电离子探测核电荷半径、QED 和标准模型
- 批准号:
2309273 - 财政年份:2023
- 资助金额:
$ 18.2万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
- 批准号:
2323023 - 财政年份:2023
- 资助金额:
$ 18.2万 - 项目类别:
Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
- 批准号:
2319142 - 财政年份:2023
- 资助金额:
$ 18.2万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
- 批准号:
2323022 - 财政年份:2023
- 资助金额:
$ 18.2万 - 项目类别:
Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
- 批准号:
2319144 - 财政年份:2023
- 资助金额:
$ 18.2万 - 项目类别:
Standard Grant
Collaborative Research: RUI: PM:High-Z Highly Charged Ions Probing Nuclear Charge Radii, QED, and the Standard Model
合作研究:RUI:PM:高阻抗高带电离子探测核电荷半径、QED 和标准模型
- 批准号:
2309274 - 财政年份:2023
- 资助金额:
$ 18.2万 - 项目类别:
Standard Grant
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
- 批准号:
2230891 - 财政年份:2023
- 资助金额:
$ 18.2万 - 项目类别:
Continuing Grant