High Throughput Tip-Enhanced Near Field Microscopy using Radially Polarized Fiber Modes
使用径向偏振光纤模式的高通量尖端增强近场显微镜
基本信息
- 批准号:1610190
- 负责人:
- 金额:$ 36.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Title: Tip-enhanced near-field microscopy using optical fiber vorticesNon-technical description: Optical microscopy is arguably one of the most successful techniques for non-invasive examination of the microscopic world ever created. In the last decade nanoscience, phenomena at length scales orders of magnitude smaller than the microscale, has played an increasingly larger role in the development of widespread technology such as nanoscale semiconductor devices, nanoparticle based therapies in medicine, and sensors that can measure minute forces and signals from biological as well as inanimate physical systems. Likewise, nanotechnology has also furthered our understanding of fundamental scientific phenomena at the nanoscale, such as the electronic structure of two-dimensional materials that promise to usher in the next generation of high-speed wearable electronic devices, images of intrinsic vibrational modes capable of sub-cellular classification and local presence of important proteins in biophysical systems. Probing, and in particular, optical probing at the nanoscale is thus of paramount importance to help lead the next revolution in science and technology much like the optical microscope did in the microscopic world. Our proposed optical fiber vortex light source will provide two to three orders of magnitude signal enhancement and background reduction in devices that can optically resolve nanoscale phenomena.Technical description: The goal of this proposed program is to develop a tip-enhanced near-field microscopy system that retains all the advantages of current scattering type near-field scanning optical microscopes, including the ability to probe the amplitude and phase response of materials in the nanometer scale using well-established elastic or inelastic scattering techniques, but with an increased throughput by several orders of magnitude (simulations suggest the possibility of 75% efficiencies, as opposed to 0.1-0.2% in current implementations). This will reduce background problems that have limited the application of current implementations of tip-enhanced microscopy systems. The primary intellectual significance of achieving program goals will be the realization of a nanoscale microscopy system that can probe signals orders of magnitude weaker than currently possible, aided by the dramatic reductions in background that an optical fiber-based nanoscale tip would enable. In the proposed effort we will use fiber tapering, electrochemical etching techniques, and precision metal deposition techniques to adiabatically convert the stable radially polarized optical modes in the fiber into plasmonic modes at the fiber tip, as required for tip-enhanced microscopy. The adiabatic mode transformation, as opposed to external illumination as is currently employed, will be the key differentiator between current tip-enhanced microscopy systems and the proposed device, as this is expected to yield the two-to-three orders of magnitude increase in signal throughput and corresponding decrease in background.
职务名称:使用光纤涡流的尖端增强近场显微镜非技术描述:光学显微镜可以说是有史以来最成功的显微镜世界非侵入性检查技术之一。在过去的十年中,纳米科学,现象在长度尺度的数量级小于微米尺度,已经发挥了越来越大的作用,在广泛的技术发展,如纳米半导体器件,纳米粒子为基础的医学疗法,和传感器,可以测量微小的力量和信号,从生物以及无生命的物理系统。同样,纳米技术也促进了我们对纳米尺度上基本科学现象的理解,例如有望引领下一代高速可穿戴电子设备的二维材料的电子结构、能够进行亚细胞分类的固有振动模式的图像以及生物物理系统中重要蛋白质的局部存在。因此,探测,特别是纳米级的光学探测,对于帮助引领下一次科学技术革命至关重要,就像光学显微镜在微观世界中所做的那样。我们提出的光纤涡旋光源将提供两到三个数量级的信号增强和背景减少的设备,可以光学解决纳米级现象。技术描述:本计画的目标是开发一种尖端增强近场显微镜系统,保留电流散射型近场扫描光学显微镜的所有优点,包括使用公认的弹性或非弹性散射技术探测纳米尺度材料的振幅和相位响应的能力,但是具有几个数量级的增加的吞吐量(模拟表明75%效率的可能性,而在当前实现中为0.1-0.2%)。这将减少限制尖端增强显微镜系统的当前实现的应用的背景问题。实现计划目标的主要智力意义将是实现纳米级显微镜系统,该系统可以探测比目前可能的信号弱几个数量级的信号,并通过基于光纤的纳米级尖端将使背景的显着减少来帮助。在拟议的努力中,我们将使用光纤锥形,电化学蚀刻技术,和精密金属沉积技术,在光纤中的稳定的径向偏振光学模式转换成等离子体激元模式在光纤尖端,尖端增强显微镜所需的。绝热模式转换,而不是外部照明,目前采用的,将是当前的尖端增强显微镜系统和拟议的设备之间的关键区别,因为这是预计将产生的两到三个数量级的信号吞吐量的增加和相应的减少背景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siddharth Ramachandran其他文献
Geothermal Sourced Trigeneration Plant for Puga Valley: Techno-Economic Analysis and Multi-Objective Optimization
普加谷地的地热三联供发电厂:技术经济分析与多目标优化
- DOI:
10.1016/j.tsep.2025.103487 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:5.400
- 作者:
Siddharth Ramachandran;Satya Sekhar Bhogilla;Pallippattu Krishnan Vijayan - 通讯作者:
Pallippattu Krishnan Vijayan
3D-printing yields structured light
3D 打印产生结构化光
- DOI:
10.1038/s41566-022-01070-3 - 发表时间:
2022-08-17 - 期刊:
- 影响因子:32.900
- 作者:
Siddharth Ramachandran - 通讯作者:
Siddharth Ramachandran
Techno-economic analysis and optimization of a binary geothermal combined district heat and power plant for Puga Valley, India
- DOI:
10.1016/j.renene.2024.121223 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Siddharth Ramachandran;Satya Sekhar Bhogilla;P.K. Vijayan - 通讯作者:
P.K. Vijayan
Yb$^{{m 3+}}$ Ring Doping in High-Order-Mode Fiber for High-Power 977-nm Lasers and Amplifiers
用于高功率 977 nm 激光器和放大器的高阶模光纤中的 Yb$^{{m 3 }}$ 环掺杂
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:4.9
- 作者:
R. S. Quimby;T. F. Morse;Roman L. Shubochkin;Siddharth Ramachandran - 通讯作者:
Siddharth Ramachandran
Optical analysis and design of a novel solar beam down concentrator for indoor cooking
- DOI:
10.1016/j.solcom.2024.100083 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Dev Banitia;Siddharth Ramachandran;Satya Sekhar Bhogilla;P.K. Vijayan - 通讯作者:
P.K. Vijayan
Siddharth Ramachandran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siddharth Ramachandran', 18)}}的其他基金
Endoscopic STED Nanoscopy with Optical FIber Vortices
带有光纤涡流的内窥镜 STED 纳米镜
- 批准号:
1310493 - 财政年份:2013
- 资助金额:
$ 36.07万 - 项目类别:
Standard Grant
相似国自然基金
声电转换水凝胶通过抑制TIP60介导的HMGB1乳酸化增强巨噬细胞韧性促进腱骨愈合的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
TIP60调控组蛋白H3K18乳酸化促进软骨终板退变的机制研究
- 批准号:QN25H060023
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
TIP39 调控复制叉稳定性与 PARP 抑制剂耐药
的机制研究
- 批准号:Z24C070004
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于FP腔型Lab-on-tip传感器阵列化光微流芯片的高效生物检测技术
研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
TiP2O7助催化剂增强高温聚合物电解质膜燃料电池催化层局域氧浓度与质子输运研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
CLIP-170家族蛋白Tip1的磷酸化参与细胞极性生长调控的分子机制研究
- 批准号:32370814
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
丙戊酸靶向调控Tip60-ATM-Rad51介导的DNA损伤修复阻遏放射性口腔黏膜炎的效应及机制研究
- 批准号:82301068
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ASXL2缺失致SET1甲基化不足抑制TIP150转录在低氧精子尾部畸形中的作用机制研究
- 批准号:CSTB2023NSCQ-MSX0034
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
铜绿假单胞菌Ndk通过Tip60/PPARγ途径调控巨噬细胞表型转化抑制创面愈合的机制研究
- 批准号:CSTB2023NSCQ-MSX0931
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
LASS2通过调控ERK/GSK-3β/TIP60诱发少突胶质细胞凋亡在SAH后白质损伤的机制研究
- 批准号:CSTB2023NSCQ-MSX0749
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Design and fabrication of a hybrid metamaterial scanning probe for tunable tip-enhanced nanospectroscopy
用于可调谐尖端增强纳米光谱的混合超材料扫描探针的设计和制造
- 批准号:
23K13640 - 财政年份:2023
- 资助金额:
$ 36.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Tip enhanced Terahertz - Raman for investigating graphene-water interactions at the nanoscale
尖端增强太赫兹 - 拉曼用于研究纳米级石墨烯-水相互作用
- 批准号:
22KF0394 - 财政年份:2023
- 资助金额:
$ 36.07万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Achieving tip-enhanced sum-frequency generation spectroscopy and exploring the new frontiers of surface science
实现尖端增强和频发生光谱学,探索表面科学新前沿
- 批准号:
23H01855 - 财政年份:2023
- 资助金额:
$ 36.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Enhanced position feedback and actuation control for stages with three motion axis in Z/tip/tilt
增强了 Z/倾斜/倾斜三个运动轴的平台的位置反馈和驱动控制
- 批准号:
10061601 - 财政年份:2023
- 资助金额:
$ 36.07万 - 项目类别:
Collaborative R&D
Equipment: MRI: Track 1 Acquisition of a Tip-Enhanced Raman Spectroscope for Research and Education at San Jose State University
设备: MRI:Track 1 采购尖端增强拉曼光谱仪,用于圣何塞州立大学的研究和教育
- 批准号:
2320841 - 财政年份:2023
- 资助金额:
$ 36.07万 - 项目类别:
Standard Grant
MRI: Acquisition of a Scanning Near-Field Optical Microscope (neaSNOM) with Combined Nano-Infrared/Tip-Enhanced Raman Spectroscopy for Research & Education
MRI:购买扫描近场光学显微镜 (neaSNOM) 并结合纳米红外/尖端增强拉曼光谱进行研究
- 批准号:
2216239 - 财政年份:2022
- 资助金额:
$ 36.07万 - 项目类别:
Standard Grant
Tip-Enhanced Molecular and Quantum Cavity Nano-Optics
尖端增强分子和量子腔纳米光学
- 批准号:
2108009 - 财政年份:2021
- 资助金额:
$ 36.07万 - 项目类别:
Standard Grant
Raman microscope for tip-enhanced Raman scattering (TERS)
用于尖端增强拉曼散射 (TERS) 的拉曼显微镜
- 批准号:
447264071 - 财政年份:2020
- 资助金额:
$ 36.07万 - 项目类别:
Major Research Instrumentation
Development of tip-enhanced and time-resolved THz nanospectroscopy
尖端增强和时间分辨太赫兹纳米光谱学的发展
- 批准号:
20H02625 - 财政年份:2020
- 资助金额:
$ 36.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Revealing Lattice Defect Restoration in Graphene Oxide using Tip-Enhanced Raman Spectroscopy
使用尖端增强拉曼光谱揭示氧化石墨烯中的晶格缺陷修复
- 批准号:
20K15132 - 财政年份:2020
- 资助金额:
$ 36.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists