Portable, fluorescence-based bio-molecular sensor on CMOS chip with integrated nano-optics for massively multiplexed assays
CMOS 芯片上的便携式荧光生物分子传感器,具有集成纳米光学器件,适用于大规模多重分析
基本信息
- 批准号:1610761
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Molecular diagnostics is one of the growing areas of medical diagnostics and aims to assess a person's health by detecting and measuring specific genetic sequences or proteins. Affinity-based sensing with fluorescence-based labels remains one of the most prevalent form of sensing of bio-molecules and while they are routinely used in hospitals, reference labs, and blood banks to screen for infectious diseases, current optical-based sensing technology is still complex consisting of an assembly of electronic, optical and mechanical components including lenses, objectives, collimators, multilayer thin film filters, monchrometers, photo-multiplier tubes, fiber optics, precision mechanical scanners etc., making the system large, bulky, expensive and non-portable. On the other hand, Complementary-metal-oxide-semiconductor (CMOS) technology, provides an unparalleled platform for integration of extremely complex systems, with high yield in a cost-efficient manner. The goal of the proposal is to co-opt CMOS technology and combine with new methods to integrate optical elements on the chip to realize portable, chip-scale, fluorescence-based biomolecular sensing technology. Miniaturizing an entire fluorescence sensing system from the biochemical platform to the sensor and scanner on one chip with a low-cost, optical excitation source can potentially open up completely new methodologies of in-vitro and in-vivo sensing and imaging. The ability to simultaneously sense multiple genetic as well as protein biomarkers in a rapid and multiplexed detection platform can also drastically improve the statistics of detection, critically important for diagnostics. The crosscut approach towards this project will engage and train both graduate and undergraduate students across multiple disciplines. The PI will also engage high-school seniors from local schools and broadly disseminate the knowledge through his undergraduate and graduate courses and through publications, seminars and workshops.The detection methodology for an affinity-based bio-sensor platform relies on selective target biomolecules by capturing probes and the chemistry is transduced label-free using methods such as impedance-spectroscopy, electro-analysis, Raman scattering or with magnetic, dielectric or optical labels. While detecting changes in the optical fields are mature in CMOS-based image sensors, in absence of high-performance integrated optical components, miniaturization of a fluorescence sensing system in CMOS has relied on time-resolved techniques with synchronized sources or externally grown optical filters and/or collimators which can add complexity and cost to the system. The goal of this proposal is to investigate methods by which optical field manipulation can be achieved in standard CMOS technology exploiting sub-wavelength interaction of metal-photonic nanostructures with incident optical fields in the visible range. Specifically, this work proposes design of electronic-nanophotonic architectures, signal-processing techniques and bio-interfaces on-chip with integrated 3D nanophotonic elements for massively multiplexed, fluorescence-based bio-assays. These structures are capable of excitation light suppression across a wide range of incidence angles and allow the fluorescence signal to pass, and get detected and processed over a multitude of sensor sites to enable high-density functionalized optical biosensor chips. Integrated nanoplasmonic structures in the visible range in CMOS with embedded electronics can lead to complex and miniaturized optical systems-on-chip for new applications in sensing and imaging.
分子诊断是医学诊断的一个不断发展的领域,旨在通过检测和测量特定的基因序列或蛋白质来评估人的健康状况。利用基于荧光的标记的基于亲和力的感测仍然是感测生物分子的最普遍的形式之一,并且虽然它们常规地用于医院、参考实验室和血库以筛查传染病,但是当前基于光学的感测技术仍然是复杂的,其由包括透镜、物镜、准直器、多层薄膜滤光器、单色仪、光电倍增管、光纤、精密机械扫描仪等,这使得该系统大、笨重、昂贵并且不便携。另一方面,互补金属氧化物半导体(CMOS)技术为极其复杂的系统集成提供了无与伦比的平台,以具有成本效益的方式实现高产量。该提案的目标是增选CMOS技术,并将联合收割机与新方法结合,将光学元件集成在芯片上,实现便携式、芯片级、基于荧光的生物分子传感技术。微型化整个荧光传感系统,从生化平台到传感器和扫描仪在一个芯片上,具有低成本,光学激发源可以潜在地开辟全新的体外和体内传感和成像方法。在快速和多重检测平台中同时感测多种遗传生物标志物以及蛋白质生物标志物的能力也可以大大改善检测的统计数据,这对诊断至关重要。对这个项目的横切方法将从事和培训跨多个学科的研究生和本科生。PI还将与当地学校的高中毕业生合作,并通过他的本科和研究生课程以及出版物、研讨会和讲习班广泛传播知识。基于亲和性的生物传感器平台的检测方法依赖于通过捕获探针选择性靶生物分子,并且使用阻抗光谱法、电分析法、拉曼散射法或磁共振法等方法进行无标记的化学转换。电介质或光学标签。虽然在基于CMOS的图像传感器中检测光场中的变化是成熟的,但是在没有高性能集成光学部件的情况下,CMOS中的荧光感测系统的小型化依赖于具有同步源或外部生长的滤光器和/或准直器的时间分辨技术,这会增加系统的复杂性和成本。本提案的目标是研究在标准CMOS技术中利用金属光子纳米结构与可见光范围内的入射光场的亚波长相互作用来实现光场操纵的方法。具体而言,这项工作提出了电子纳米光子架构,信号处理技术和生物接口芯片上集成的三维纳米光子元件的大规模多路复用,基于荧光的生物测定的设计。这些结构能够在宽范围的入射角上抑制激发光,并允许荧光信号通过,并在多个传感器位点上被检测和处理,以实现高密度功能化光学生物传感器芯片。 CMOS中可见光范围内的集成纳米等离子体结构与嵌入式电子器件可以导致复杂和小型化的片上光学系统,用于传感和成像的新应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kaushik Sengupta其他文献
Terahertz Beam Steering: from Fundamentals to Applications
- DOI:
10.1007/s10762-022-00902-1 - 发表时间:
2023-02-20 - 期刊:
- 影响因子:2.500
- 作者:
Yasuaki Monnai;Xuyang Lu;Kaushik Sengupta - 通讯作者:
Kaushik Sengupta
Role Conflict, Role Balance and Affect: A Model of Well-being of the Working Student
角色冲突、角色平衡与影响:在职学生的幸福感模型
- DOI:
10.21818/001c.16780 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Janet A. Lenaghan;Kaushik Sengupta - 通讯作者:
Kaushik Sengupta
Analysis of mechanical property of electrically assisted friction stir welding to enhance the efficiency of joints
分析电辅助搅拌摩擦焊的机械性能以提高接头效率
- DOI:
10.1016/j.matpr.2020.06.321 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Kaushik Sengupta;Dilip Kr Singh;A. K. Mondal;D. Bose;B. Ghosh - 通讯作者:
B. Ghosh
mmWAVE and Signal Processing
毫米波和信号处理
- DOI:
10.1109/fnwf58287.2023.10520461 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tim Lee;Ramesh Gupta;H. Krishnaswamy;Paolo Gargini;Earl McCune;Harrison Chang;Alberto Valdes;Kamal Samantha;Kaushik Sengupta;Masood Ur;Imran Mehdi;Anding Zhu - 通讯作者:
Anding Zhu
Dentin-derived alveolar bone graft for alveolar augmentation: A systematic review
用于牙槽增量的牙本质源性牙槽骨移植:系统评价
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Dedy Agoes Mahendra;Kavanila Bilbalqish;Alexander Patera Nugraha;A. Cahyanto;Kaushik Sengupta;Ankur Razdan;Kamal Hanna;N. Hariyani - 通讯作者:
N. Hariyani
Kaushik Sengupta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kaushik Sengupta', 18)}}的其他基金
Collaborative Research: CNS Core: Medium: Access, Mobility, and Security above 100 GHz
合作研究:CNS 核心:中:100 GHz 以上的访问、移动性和安全性
- 批准号:
2211617 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
RINGS: Resilient mmWave Networks via Distributed In-Surface Computing (mmRISC)
RINGS:通过分布式表面计算 (mmRISC) 的弹性毫米波网络
- 批准号:
2148271 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Collaborative Research: A Microfluidic-CMOS Cross-cut Approach enabling Tri-Modal Biorecognition for Highly Accurate Viral Diagnostics
合作研究:一种微流控-CMOS 横切方法,可实现三模态生物识别,实现高精度病毒诊断
- 批准号:
1711067 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Integrated THz Spectroscopy exploiting On-chip Scattering and Device Nonlinearity
利用片上散射和器件非线性的集成太赫兹光谱
- 批准号:
1509560 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Multiplexing Techniques for Scalable Wireless Interconnects at sub-THz Frequencies: Circuits-EM-Communication Codesign Approach
亚太赫兹频率可扩展无线互连的复用技术:电路-电磁-通信协同设计方法
- 批准号:
1408490 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
亚纳米单分子定位技术研究化学修饰对蛋白-膜相互作用的干预
- 批准号:91753104
- 批准年份:2017
- 资助金额:70.0 万元
- 项目类别:重大研究计划
“后编码”荧光微/纳米颗粒探针制备及分析应用研究
- 批准号:20745004
- 批准年份:2007
- 资助金额:8.0 万元
- 项目类别:专项基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Developing a fluorescence lifetime-based GTP biosensor for investigating cellular energy metabolism
开发基于荧光寿命的 GTP 生物传感器来研究细胞能量代谢
- 批准号:
24K17780 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ultra-Precision Agriculture Using Fluorescence Based Label Free Technology for Green Fruit
利用基于荧光的无标签技术实现绿色水果的超精准农业
- 批准号:
22KF0179 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Continuous development of nTracer2 and its deployment at NIH image repositories
nTracer2 的持续开发及其在 NIH 图像存储库中的部署
- 批准号:
10726178 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
AI enhanced lifetime-based mesoscopic in vivo imaging of tissue molecular heterogeneity
人工智能增强了基于寿命的组织分子异质性细观体内成像
- 批准号:
10585510 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Development of a lacO/lacI based fluorescence reporter-operator system to study chromosome dynamics and double-strand break repair in mouse meiosis.
开发基于 lacO/lacI 的荧光报告操纵子系统,用于研究小鼠减数分裂中的染色体动力学和双链断裂修复。
- 批准号:
10674379 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Fluorescence lifetime-based tumor contrast enhancement using exogenous probes
使用外源探针进行基于荧光寿命的肿瘤对比度增强
- 批准号:
10775262 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Self-Assembling Peptide Nanoparticles for in vivo Genome Editor Delivery to Hematopoietic Stem Cells
用于体内基因组编辑器递送至造血干细胞的自组装肽纳米颗粒
- 批准号:
10605021 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Mechanism by Which the Bicaudal D2-Nuclear Pore Protein 358 Interaction Activates Microtubule-based Cargo Transport
双尾 D2-核孔蛋白 358 相互作用激活基于微管的货物运输的机制
- 批准号:
10809832 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Establishment of photodynamic diagnosis for apical periodontitis based on 5-ALA fluorescence live imaging
基于5-ALA荧光实时成像的根尖周炎光动力诊断方法的建立
- 批准号:
23K09188 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)