Collaborative Research: Viscoelastic Effects at the Nanoscale: Probe Rheology Theory and Simulations
合作研究:纳米尺度的粘弹性效应:探针流变理论与模拟
基本信息
- 批准号:1611328
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports theoretical and computational research, and education to develop computer simulation methods for the determination of mechanical properties of materials on the scale of nanometers - some 100,000 times smaller than the diameter of a human hair. Recent advances in chemical synthesis and fabrication technologies have made applications involving nanotechnology increasingly commonplace. Examples include the use of nanocomposites for athletic equipment and nanoparticle based drug delivery. The interesting properties of these nanosystems which make them practical and useful are determined by the specific interactions between the molecules in the system. Conventional instruments that are used for measuring mechanical properties are unable to probe the important molecular interactions and their implications for nanoscale mechanical properties of the system. In this project, a robust theory-simulation technique will be created for investigating the relationship between the molecular characteristics of a material and its nanoscale mechanical properties. Experimentation at the nanoscale is inherently difficult and very expensive. If successful, the technique developed in this project can help guide the experiments, thus leading to savings in time and cost. The formalism can also be used for designing practical applications such as cancer treatment using nanoparticle based drug delivery. Educational aspects of the work will consist of multidisciplinary training of graduate students. Outreach will be achieved via participation in a program aimed at getting junior high and high school girls interested in careers in science. TECHNICAL SUMMARYThis award supports theoretical and computational research, and education to develop computer simulation methods for probe particle microrheology, which involves determining viscoelastic properties of materials by monitoring motion of a microscopic probe particle in the medium. This method has become an established experimental technique for determining viscoelasticity of complex soft matter. Recent advances in experimental techniques have made it possible to apply the technique at the nanoscale. The nanoscale viscoelastic properties of interest are governed by the specific interactions and structure in the system at these length scales. Thus, a simulation technique would be valuable for interpreting probe particle nanorheology experimental results in terms of the molecular properties of the system. In addition to the need for explicitly accounting for the molecular interactions, such an endeavor faces additional challenges at the nanoscale such as availability of an expanded frequency range, and the need to account for the medium and particle inertia when analyzing the particle trajectory. A particulate theory-simulation technique for nanoscale bead rheology will be created in the project that will allow for the investigation of viscoelasticity in complex matter. The inertial extension of the generalized Stokes-Einstein relation (IGSER) will be used to extract medium viscoelasticity from nanoparticle motion. The PIs will focus on three aspects: (1) The frequency range that can be investigated in molecular simulations is severely restricted due to the long-range hydrodynamic interactions between the images of the moving probe particle, which are the result of the periodic boundary conditions that are used in the simulations. A framework will be created to modify the particle trajectory analysis procedure in order to quantitatively account for these hydrodynamic interactions. Such a formalism will significantly extend the frequency range that can be probed by simulations. (2) Probe rheology is presumed to have the ability to determine the local viscoelastic properties of the medium. This hypothesis will be tested by creating a model system with a nanoscale temperature gradient, which in turn, will result in a gradient in viscoelasticity. (3) Particle rheology is usually used to infer viscoelasticity from the knowledge of the probe particle motion. The usage of particle rheology in the reverse direction - predicting the extent of particle motion in the complex medium - given the knowledge of the viscoelastic spectrum of the medium, will be investigated in the project. Accomplishing these tasks will yield a combined theory-simulation technique for the determination of the nanoscale viscoelasticity in complex soft matter. Experimentation at the nanoscale is inherently difficult and very expensive. If successful, the technique developed in this project can help guide the experiments, thus leading to savings in time and cost. The formalism can also be used for designing practical applications such as cancer treatment using nanoparticle based drug delivery. Educational aspects of the work will consist of multidisciplinary training of graduate students. Outreach will be achieved via participation in a program aimed at getting junior high and high school girls interested in careers in science.
非技术总结该奖项支持理论和计算研究,以及开发计算机模拟方法来确定纳米级材料的机械性能的教育-纳米级材料的直径大约是人类头发直径的10万倍。化学合成和制造技术的最新进展使涉及纳米技术的应用变得越来越常见。例如将纳米复合材料用于运动器材和基于纳米颗粒的药物输送。这些纳米系统的有趣特性使它们变得实用和有用,这是由系统中分子之间的特定相互作用决定的。用来测量机械性能的传统仪器无法探测重要的分子相互作用及其对体系纳米级机械性能的影响。在这个项目中,将创建一种强大的理论模拟技术来研究材料的分子特征与其纳米级机械性能之间的关系。在纳米尺度上进行实验本身就很困难,成本也很高。如果成功,该项目开发的技术可以帮助指导实验,从而节省时间和成本。这种形式主义也可以用于设计实际应用,例如使用基于纳米颗粒的药物输送来治疗癌症。这项工作的教育方面将包括对研究生的多学科培训。将通过参与一项旨在让初中和高中女孩对科学职业感兴趣的计划来实现外联。技术总结该奖项支持理论和计算研究,以及开发探测粒子微观流变学的计算机模拟方法的教育,该方法涉及通过监测微观探测粒子在介质中的运动来确定材料的粘弹性属性。该方法已成为测定复杂软物质粘弹性的一种成熟的实验技术。最近实验技术的进步使这项技术在纳米尺度上的应用成为可能。感兴趣的纳米尺度的粘弹性特性受体系中特定的相互作用和结构在这些长度尺度上的支配。因此,模拟技术对于根据体系的分子性质解释探针粒子纳米流变学实验结果将是有价值的。除了需要明确地解释分子间的相互作用外,这种努力在纳米尺度上还面临着额外的挑战,例如扩大频率范围的可用性,以及在分析粒子轨迹时需要考虑介质和粒子的惯性。在该项目中,将创建一种纳米级微珠流变学的颗粒理论模拟技术,这将允许研究复杂物质中的粘弹性。利用广义斯托克斯-爱因斯坦关系(IGSER)的惯性扩展来提取纳米粒子运动中的介质粘弹性。PI将集中在三个方面:(1)分子模拟中可研究的频率范围受到严重限制,这是由于模拟中使用的周期性边界条件导致的移动探测粒子图像之间的远程流体动力学相互作用。将建立一个框架来修改颗粒轨迹分析程序,以便对这些水动力相互作用进行定量解释。这种形式将极大地扩展可通过模拟探测的频率范围。(2)探针流变学被认为具有确定介质局部粘弹性的能力。这一假设将通过创建一个具有纳米级温度梯度的模型系统来验证,这反过来将导致粘弹性梯度。(3)颗粒流变学通常用于根据探头颗粒运动的知识来推断粘弹性。在已知介质粘弹性谱的情况下,该项目将研究颗粒流变学在相反方向上的使用--预测颗粒在复杂介质中的运动程度。完成这些任务将产生一种理论-模拟相结合的技术,用于确定复杂软物质中的纳米级粘弹性。在纳米尺度上进行实验本身就很困难,成本也很高。如果成功,该项目开发的技术可以帮助指导实验,从而节省时间和成本。这种形式主义也可以用于设计实际应用,例如使用基于纳米颗粒的药物输送来治疗癌症。这项工作的教育方面将包括对研究生的多学科培训。将通过参与一项旨在让初中和高中女孩对科学职业感兴趣的计划来实现外联。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajesh Khare其他文献
Solidification modeling of plasma sprayed TBC: Analysis of remelt and multiple length scales of rough substrates
- DOI:
10.1361/105996302770348934 - 发表时间:
2002-06-01 - 期刊:
- 影响因子:3.300
- 作者:
Donald E. Wroblewski;Rajesh Khare;Michael Gevelber - 通讯作者:
Michael Gevelber
Rajesh Khare的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajesh Khare', 18)}}的其他基金
Collaborative: Brittle Epoxies Rendered Ductile - Crazing in Thermosetting Epoxy Nanocomposites
合作:脆性环氧树脂呈现延展性——热固性环氧树脂纳米复合材料中的裂纹
- 批准号:
0900512 - 财政年份:2009
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Computational and Experimental Studies of Cellulose Degradation for the Production of Biofuels
生物燃料生产中纤维素降解的计算和实验研究
- 批准号:
0854463 - 财政年份:2009
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Spatial and Dynamic Heterogeneity and Nonlinear Viscoelastic Constitutive Behavior of Glasses and Their Nanocomposites as Probed by Nonlinear Spectroscopies
合作研究:非线性光谱探测玻璃及其纳米复合材料的空间和动态异质性以及非线性粘弹性本构行为
- 批准号:
2219327 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Stability and dispersion of viscoelastic flows through porous media
合作研究:多孔介质粘弹性流的稳定性和分散性
- 批准号:
2141349 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Spatial and Dynamic Heterogeneity and Nonlinear Viscoelastic Constitutive Behavior of Glasses and Their Nanocomposites as Probed by Nonlinear Spectroscopies
合作研究:非线性光谱探测玻璃及其纳米复合材料的空间和动态异质性以及非线性粘弹性本构行为
- 批准号:
2219347 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Stability and dispersion of viscoelastic flows through porous media
合作研究:多孔介质粘弹性流的稳定性和分散性
- 批准号:
2141404 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Simulations and Imaging of Viscoelastic Media in Reduced Order Model Framework
协作研究:降阶模型框架中粘弹性介质的多尺度模拟和成像
- 批准号:
2110773 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Simulations and Imaging of Viscoelastic Media in Reduced Order Model Framework
协作研究:降阶模型框架中粘弹性介质的多尺度模拟和成像
- 批准号:
2111234 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Simulations and Imaging of Viscoelastic Media in Reduced Order Model Framework
协作研究:降阶模型框架中粘弹性介质的多尺度模拟和成像
- 批准号:
2111117 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: GOALI: Nanoparticle analysis of antibody colloidal interactions and their influence on viscoelastic properties of concentrated antibody solutions
合作研究:GOALI:抗体胶体相互作用的纳米颗粒分析及其对浓抗体溶液粘弹性的影响
- 批准号:
1803497 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: GOALI: Nanoparticle analysis of antibody colloidal interactions and their influence on viscoelastic properties of concentrated antibody solutions
合作研究:GOALI:抗体胶体相互作用的纳米颗粒分析及其对浓抗体溶液粘弹性的影响
- 批准号:
1804313 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Mechanical Spectroscopy of Glassy Polymers to Probe Viscoelastic Constitutive Behavior
合作研究:玻璃态聚合物的非线性机械光谱学探测粘弹性本构行为
- 批准号:
1662474 - 财政年份:2017
- 资助金额:
$ 27万 - 项目类别:
Standard Grant














{{item.name}}会员




