GOALI: High Magnetic Anisotropy Materials for Ultrahigh Density Heat-assisted Magnetic Recording Media.

目标:用于超高密度热辅助磁记录介质的高磁各向异性材料。

基本信息

  • 批准号:
    1611424
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

Over the last six decades, the areal density of magnetic recording has increased by eight orders of magnitude. These rapid advancements have fundamentally changed information technology and the way of life. The information is stored in tiny magnets, like compasses with nanometer sizes. As each bit of information is stored over an ever-smaller volume, it is essential to use materials that are still stable at extremely small dimensions against thermal effects. This material property is known as the magnetic anisotropy, which anchors magnetic moments in place, enabling their practical use. This project aims at realizing materials with high magnetic anisotropy using convenient and benign synthesis conditions, combined with control over the material properties, towards applications in next generation ultrahigh density magnetic recording media and rare-earth-free and precious-metal-free permanent magnets. This GOALI partnership between U.C. Davis and Seagate offers an exciting opportunity to rapidly transfer research results into technology. This would potentially speed up the adaptation of the emerging heat-assisted magnetic recording technology. Advances in more powerful permanent magnets would impact numerous industry sectors, including hybrid and electric vehicles, magnetically levitated trains, wind turbines, power storage, magnetic refrigeration, etc. The partnership also provides opportunities to train junior researchers in industry research and development laboratories, in addition to excellent exposure to research experience in university and national laboratory and user facilities. The team plans to initiate and actively participate in a variety of efforts to broaden participation from underrepresented groups through internships, graduate course offering, exchange visits with Seagate, and other specific programs at the Magnetism Conference.High magnetic anisotropy materials have critical applications in next generation ultrahigh density heat-assisted magnetic recording media as well as high energy density permanent magnets. Alloys of ordered FePt in the L10 phase is an ideal candidate for recording media applications. However, a critical challenge has been the high annealing temperature necessary to transform the as-deposited low anisotropy phase into the desirable high anisotropy one. This project will achieve high magnetic anisotropy L10 FePt-based thin films using atomic-scale multilayer sputtering and rapid thermal annealing. Magnetic properties of these materials will be tailored to achieve the desirable high anisotropy, large saturation magnetization, and low Curie temperature using ternary FePt-based alloys through proper tuning of the effective valence electron number. These approaches will be extended to realize L10 FeNi films that are alternative type of permanent magnets using earth abundant elements. A true understanding of the disorder-order phase transformation in these thin films will be gained, and quantitative evaluation of the phase fractions will be obtained. The partnership between U.C. Davis and Seagate will help to achieve L10 FePt and FeNi based alloys that can be readily synthesized, with controlled anisotropy at the atomic scale and minimized switching field distribution. Such materials have potentially transformative technological impacts, in speeding up the adaption for the emerging ultrahigh density heat-assisted magnetic recording technology and in the realization of high energy density permanent magnets that are rare-earth-free and precious-metal-free.
在过去的六十年中,磁记录的面密度增加了八个数量级。这些快速发展从根本上改变了信息技术和生活方式。信息存储在微小的磁铁中,就像纳米尺寸的指南针一样。由于每一位信息都存储在越来越小的体积中,因此必须使用在极小尺寸下仍能稳定抵抗热效应的材料。这种材料特性被称为磁各向异性,它将磁矩固定在适当的位置,使其能够实际使用。本项目的目标是利用方便、温和的合成条件,结合对材料性能的控制,实现具有高磁各向异性的材料,以应用于下一代高密度磁记录介质和无稀土、无贵金属永磁体。U.C.与GOALI的合作伙伴关系Davis和Seagate提供了一个令人兴奋的机会,可以将研究成果快速转化为技术。这可能会加速新兴的热辅助磁记录技术的适应。更强大的永磁体的进步将影响许多行业,包括混合动力和电动汽车,磁悬浮列车,风力涡轮机,电力存储,磁制冷等合作伙伴关系还提供了机会,培训行业研究和开发实验室的初级研究人员,除了在大学和国家实验室和用户设施的研究经验。该团队计划发起并积极参与各种努力,通过实习、提供研究生课程、与Seagate的交流访问以及磁学会议上的其他具体计划,扩大代表性不足的群体的参与。高磁各向异性材料在下一代磁密度热辅助磁记录介质以及高能量密度永磁体中具有关键应用。L10相中的有序FePt合金是记录介质应用的理想候选者。然而,一个关键的挑战一直是高退火温度所需的低各向异性相转化成所需的高各向异性。该项目将使用原子级多层溅射和快速热退火实现高磁各向异性L10 FePt基薄膜。这些材料的磁性能将被定制,以实现所需的高各向异性,大的饱和磁化强度,和低居里温度使用三元FePt基合金,通过适当调整的有效价电子数。这些方法将被扩展到实现L10 FeNi膜,这是使用地球丰富的元素的替代类型的永磁体。对这些薄膜的无序有序相变有一个真正的了解,并对相分数有定量的评价。U.C.与Davis和Seagate将帮助实现L10 FePt和FeNi基合金,这些合金可以很容易地合成,在原子尺度上具有受控的各向异性,并最小化开关场分布。这种材料具有潜在的变革性技术影响,加速了新兴的高能量密度热辅助磁记录技术的适应,并实现了无稀土和无贵金属的高能量密度永磁体。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improved Power Factor and Mechanical Properties of Composites of Yb 14 MgSb 11 with Iron
Yb 14 MgSb 11 与铁复合材料改善功率因数和机械性能
  • DOI:
    10.1021/acsaem.9b02168
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Perez, Christopher J.;Qi, Xiao;Chen, Zhijie;Bux, Sabah K.;Chanakain, Sevan;Li, Billy;Liu, Kai;Dhall, Rohan;Bustillo, Karen C.;Kauzlarich, Susan M.
  • 通讯作者:
    Kauzlarich, Susan M.
First-order reversal curve of the magnetostructural phase transition in FeTe
  • DOI:
    10.1103/physrevb.95.214402
  • 发表时间:
    2017-06-05
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Frampton, M. K.;Crocker, J.;Zieve, R. J.
  • 通讯作者:
    Zieve, R. J.
Electrically Enhanced Exchange Bias via Solid-State Magneto-ionics
  • DOI:
    10.1021/acsami.1c11126
  • 发表时间:
    2021-08-04
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Murray, Peyton D.;Jensen, Christopher J.;Liu, Kai
  • 通讯作者:
    Liu, Kai
Two-way magnetic resonance tuning and enhanced subtraction imaging for non-invasive and quantitative biological imaging
  • DOI:
    10.1038/s41565-020-0678-5
  • 发表时间:
    2020-05-25
  • 期刊:
  • 影响因子:
    38.3
  • 作者:
    Wang, Zhongling;Xue, Xiangdong;Li, Yuanpei
  • 通讯作者:
    Li, Yuanpei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kai Liu其他文献

Crashworthiness index of honeycomb sandwich structures under low-speed oblique impact
低速斜向冲击下蜂窝夹层结构耐撞指数
Investigation on transient electrically-assisted stress relaxation of QP980 advanced high strength steel
QP980先进高强钢瞬态电辅助应力松弛研究
  • DOI:
    10.1016/j.mechmat.2015.11.007
  • 发表时间:
    2016-02
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Kai Liu;Xinbao Wang;Fei Chen;Jianfeng Wang
  • 通讯作者:
    Jianfeng Wang
Portfolio optimization under multivariate affine generalized hyperbolic distributions
多元仿射广义双曲分布下的投资组合优化
Evolutionary characteristics of biological soil crusts in grassland restoration in the Source Zone of the Yellow River
黄河源区草地恢复中生物土壤结皮的演化特征
  • DOI:
    10.1163/22244662-bja10036
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Huafang Sun;Xilai Li;Liqun Jin;Jing Zhang;Chunying Lin;Kai Liu
  • 通讯作者:
    Kai Liu
Gender-related differences in β-adrenergicreceptor-mediated cardiac remodeling
β-肾上腺素能受体介导的心脏重塑中的性别相关差异

Kai Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kai Liu', 18)}}的其他基金

Equipment: MRI: Track 1 Acquisition of a 3-Dimensional Nanolithography Instrument
设备:MRI:轨道 1 获取 3 维纳米光刻仪器
  • 批准号:
    2320636
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Magnetic Recording Media based on High Entropy Alloys
基于高熵合金的磁记录介质
  • 批准号:
    2151809
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Chiral Spin Textures in Magnetic Nanostructures
磁性纳米结构中的手性自旋纹理
  • 批准号:
    2005108
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Magnetic Nanostructures with Perpendicular Anisotropy for Room Temperature Skyrmions
室温斯格明子具有垂直各向异性的磁性纳米结构
  • 批准号:
    1905468
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
GOALI: High Magnetic Anisotropy Materials for Ultrahigh Density Heat-assisted Magnetic Recording Media.
目标:用于超高密度热辅助磁记录介质的高磁各向异性材料。
  • 批准号:
    1933527
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Enabling Quantum Leap: Convergent Approach to the Challenges of Moore's Law National Science Foundation, Division of Materials Research, Condensed Matter Physics Program Workshop
实现量子飞跃:应对摩尔定律挑战的收敛方法国家科学基金会材料研究部凝聚态物理项目研讨会
  • 批准号:
    1829683
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Magnetic Property Measurements System
MRI:获取磁特性测量系统
  • 批准号:
    1828420
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Magnetic Nanostructures with Perpendicular Anisotropy for Room Temperature Skyrmions
室温斯格明子具有垂直各向异性的磁性纳米结构
  • 批准号:
    1610060
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EAGER: Magnetic Nanostructures with Perpendicular Anisotropy
EAGER:具有垂直各向异性的磁性纳米结构
  • 批准号:
    1543582
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Explosive Solutions of Stochastic Retarded Parabolic and Hyperbolic Differential Equations
随机缓滞抛物型和双曲微分方程的爆炸解
  • 批准号:
    EP/I019987/1
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant

相似海外基金

Identification of earthquake-triggered turbidites in lacustrine sedimentary sequences using anisotropy of magnetic susceptibility and micro-XRF analyses
利用磁化率各向异性和微 XRF 分析识别湖泊沉积序列中地震引发的浊积岩
  • 批准号:
    21K18395
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Fundamental rock magnetic studies on single-domain particles and anisotropy, and applications to paleomagnetism and petrophysics
单域粒子和各向异性的基础岩石磁性研究及其在古地磁学和岩石物理学中的应用
  • 批准号:
    RGPIN-2017-04165
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Strain engineering for the development of a ferromagnetic europium compound and emergence of giant magnetic anisotropy
应变工程用于铁磁铕化合物的开发和巨磁各向异性的出现
  • 批准号:
    21K05227
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Catalytic reaction of peramagnetic oxygen molecule on platinum single crystal surface with perpendicular magnetic anisotropy
具有垂直磁各向异性的铂单晶表面上的顺磁性氧分子的催化反应
  • 批准号:
    21K18801
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Improving perpendicular magnetic anisotropy of Fe/MgO and its voltage controllability by introducing nonmagnetic elements
引入非磁性元素改善Fe/MgO垂直磁各向异性及其电压可控性
  • 批准号:
    20K15158
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Fundamental rock magnetic studies on single-domain particles and anisotropy, and applications to paleomagnetism and petrophysics
单域粒子和各向异性的基础岩石磁性研究及其在古地磁学和岩石物理学中的应用
  • 批准号:
    RGPIN-2017-04165
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Relationship between magnetic anisotropy and anisotropic electronic structure studied by soft x-ray spectroscopy
软X射线光谱研究磁各向异性与各向异性电子结构的关系
  • 批准号:
    20K14416
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Experimental study on the magnetic field-driven quantum phase transition in triangular lattice antiferromagnets with easy-plane anisotropy
易平面各向异性三角晶格反铁磁体磁场驱动量子相变实验研究
  • 批准号:
    20J22215
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Exhibiting high coercivity of Sm-Fe system compounds by recovery of local magnetic anisotropy
通过恢复局部磁各向异性表现出 Sm-Fe 系化合物的高矫顽力
  • 批准号:
    20K05059
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Anisotropy effects of the magnetic resonance signal of biological tissue.
生物组织磁共振信号的各向异性效应。
  • 批准号:
    RGPIN-2016-05371
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了