EAPSI: A Method Connecting Radiation Diffusion and Radiation Transfer Along Resonant Lines

EAPSI:一种沿着共振线连接辐射扩散和辐射传输的方法

基本信息

  • 批准号:
    1613777
  • 负责人:
  • 金额:
    $ 0.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Fellowship Award
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

The radiative transfer equation can be used to describe the transport of light through optically thick or optically thin regimes. As a result, there is great interest in the solution of the radiative transfer equation from numerous scientific fields. The goal of this research is to develop a method connecting solutions of the radiative diffusion equation with solutions of the radiative transfer equation where optically thick and thin regimes coexist. The radiative transfer equation is notoriously difficult to solve in many real-world applications. As a result, the diffusion approximation is often used, as the resulting equation is easier to solve. In optically thick regimes, the diffusion approximation is appropriate; however, in optically thin regimes, the solution of the radiative transfer equation is needed. In collaboration with Professor Masayuki Umemura of the Center for Computational Sciences at the University of Tsukuba, Japan, a method connecting solutions of the radiative diffusion equation in optically thick regimes with solutions of the radiative transfer equation in optically thin regimes will be developed. This approach will result in a more efficient means of solving radiative transfer problems in regions where optically thick and thin regimes coexist.More specifically, the radiative transfer equation is an integro-differential equation which mathematically describes the propagation of radiation within a medium that participates. Analytical solutions for the equation are known only for a small subset of situations, which necessitates its numerical solution. Yet numerically, due to the high dimension and integro-differential form of the equation, the computational demands are significant. The diffusion approximation is an extremely important approximation in radiative transfer. In comparison, the radiative diffusion equation is much easier to solve and is an accurate approximation in optically thick regimes. In order to develop a more efficient method for solving radiative transfer problems where optically thick and thin regimes coexist, we aim to develop a method capable of coupling solutions of the radiative diffusion equation with solutions of the radiative transfer equation. This award under the East Asia and Pacific Summer Institutes program supports summer research by a U.S. graduate student and is jointly funded by NSF and the Japan Society for the Promotion of Science.
辐射传输方程可以用来描述光通过光学厚或光学薄区域的传输。 因此,辐射传输方程的求解引起了众多科学领域的极大兴趣。本研究的目标是开发一种将辐射扩散方程的解与光学厚区和光学薄区共存的辐射传输方程的解联系起来的方法。 众所周知,辐射传递方程在许多实际应用中很难求解。因此,经常使用扩散近似,因为所得方程更容易求解。在光学厚的区域,扩散近似是合适的;然而,在光学薄的区域,需要辐射传输方程的解。与日本筑波大学计算科学中心的Masayuki Umemura教授合作,将开发一种将光学厚区域中的辐射扩散方程的解与光学薄区域中的辐射传递方程的解联系起来的方法。这种方法将导致一个更有效的手段来解决在光学厚和薄regimes. More共存的区域中的辐射传递问题,更具体地说,辐射传递方程是一个积分微分方程,它在数学上描述了辐射在参与的介质中的传播。该方程的解析解仅在一小部分情况下是已知的,这需要其数值解。然而,数值上,由于高的维度和积分微分形式的方程,计算需求是显着的。扩散近似是辐射传递中一个非常重要的近似。相比之下,辐射扩散方程更容易求解,并且是光学厚区域的精确近似。 为了开发一种更有效的方法来解决光学厚和薄制度共存的辐射传输问题,我们的目标是开发一种方法,能够耦合的辐射扩散方程的解决方案与辐射传输方程的解决方案。东亚和太平洋夏季研究所计划下的这个奖项支持美国研究生的夏季研究,由NSF和日本科学促进会共同资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth Czuprynski其他文献

Numerical analysis of the energy-dependent radiative transfer equation
能量相关辐射传输方程的数值分析
  • DOI:
    10.1093/imanum/dry025
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kenneth Czuprynski;Joseph A. Eichholz;W. Han
  • 通讯作者:
    W. Han
Parallel Boundary Element Solutions of Block Circulant Linear Systems for Acoustic Radiation Problems With Rotationally Symmetric Boundary Surfaces
旋转对称边界面声辐射问题分块循环线性系统的并联边界元解
  • DOI:
    10.1115/ncad2012-0445
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Kenneth Czuprynski;J. B. Fahnline;Suzanne Shontz
  • 通讯作者:
    Suzanne Shontz
Scalable POMDP Decision-Making Using Circulant Controllers
使用循环控制器进行可扩展的 POMDP 决策
Scalable Gradient Ascent for Controllers in Constrained POMDPs
约束 POMDP 中控制器的可扩展梯度上升
Banded Controllers for Scalable POMDP Decision-Making
用于可扩展 POMDP 决策的带状控制器
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kenneth Czuprynski;K. H. Wray
  • 通讯作者:
    K. H. Wray

Kenneth Czuprynski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

偏线性分位数样本截取和选择模型的估计与应用—基于非参数筛分法(Sieve Method)
  • 批准号:
    72273091
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Support for Institutes and Research Groups on Qualitative and Multi-Method Research: 2024-2026
对定性和多方法研究机构和研究小组的支持:2024-2026
  • 批准号:
    2343087
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Standard Grant
CAREER: Adapting the Fluid Projection Method to Model Elasto-plastic Materials
职业:采用流体投影方法来模拟弹塑性材料
  • 批准号:
    2427204
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Continuing Grant
Women’s Careers in STEM: a Multi-method Project from an Indigenous Perspective
STEM 领域的女性职业:从原住民角度看的多方法项目
  • 批准号:
    24K16421
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
SBIR Phase I: Developing an Indoor Method to Produce Morel Mushroom Fruiting Bodies
SBIR 第一阶段:开发生产羊肚菌子实体的室内方法
  • 批准号:
    2325697
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Introducing Quantum Logic Spectroscopy to Greater Southern Nevada as a Vital Quantum Control and Information Process Method
RII Track-4:NSF:将量子逻辑光谱作为重要的量子控制和信息处理方法引入内华达州南部
  • 批准号:
    2327247
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Standard Grant
I-Corps: Two-step water splitting method using an electrochemical Zinc/Zinc Oxide cycle to produce hydrogen
I-Corps:使用电化学锌/氧化锌循环生产氢气的两步水分解方法
  • 批准号:
    2405325
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of an efficient method to generate live-attenuated and replication-defective DNA viruses for vaccine development
I-Corps:一种有效方法的转化潜力,可生成用于疫苗开发的减毒活病毒和复制缺陷型 DNA 病毒
  • 批准号:
    2420924
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Standard Grant
STTR Phase I: A Reliable and Efficient New Method for Satellite Attitude Control
STTR第一阶段:可靠、高效的卫星姿态控制新方法
  • 批准号:
    2310323
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Standard Grant
A Semi-Analytical, Heterogeneous Multiscale Method for Simulation of Inverter-Dense Power Grids
一种用于逆变器密集电网仿真的半解析异构多尺度方法
  • 批准号:
    2329924
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Standard Grant
Engineering a 3D construct with perfusable and functional capillary networks using scaffold-free method
使用无支架方法设计具有可灌注和功能性毛细血管网络的 3D 结构
  • 批准号:
    24K21088
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了