Nonsmooth Optimization: Structure, Geometry, and Conditioning

非光滑优化:结构、几何形状和条件

基本信息

  • 批准号:
    1613996
  • 负责人:
  • 金额:
    $ 34.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

This research project concerns optimization theory, a classical mathematical subject of wide applicability that is evolving in response to the demands of current computational developments and challenges. Practitioners across the applied sciences and engineering often now resemble mountaineers more than hill-walkers, exploring optimization goals in sharp rather than smooth strategic landscapes. Solving such problems in control engineering, contemporary statistics, or big data applications has had transformative impact. Often lost in the computational fog, however, has been the fundamental geometry underlying this success: mathematical specialists often compute little, and conversely, practitioners across vital science and engineering applications are typically unaware of the fundamentals. This project aims to bridge that divide, developing an innovative mix of geometry and computation. Ph.D. students will be involved in all aspects of the research.The project envisages a unifying mathematical strategy based on two dual but equivalent viewpoints: the geometric idea of partial smoothness and the algorithmic idea of identification. Using the power of modern variational analysis, the project aims to illuminate how partly smooth geometry encourages solutions with desirable structure (like sparsity or low rank), how popular contemporary algorithms are hence drawn to (or "identify") such solutions, how fast the methods therefore converge, and how we might accelerate them. In the project's spotlight are two motivating algorithms, both very promising in computational practice. The first, a prox-linear method, solves large-scale structured problems whose explicit partly smooth geometry it could potentially exploit. The second, a smooth quasi-Newton method with robust but baffling success for nonsmooth optimization, is blind to any explicit geometry, but is strongly influenced by it. Crucial to the project's success will be interplay with other areas of classical mathematics; matrix analysis is rich in potential applications -- the project aims in particular at the "Crouzeix conjecture." From a foundational perspective, commonly-occurring polynomial inequalities can induce partial smoothness through stratification into smooth surfaces, immersing this project in the fundamentals of semi-algebraic geometry.
该研究项目涉及优化理论,这是一个具有广泛适用性的经典数学主题,正在根据当前计算发展和挑战的需求而发展。应用科学和工程领域的从业者现在往往更像登山者,而不是爬山者,在尖锐而不是平滑的战略景观中探索优化目标。在控制工程、当代统计或大数据应用中解决这些问题已经产生了变革性的影响。然而,这种成功背后的基本几何学往往迷失在计算的迷雾中:数学专家通常很少计算,相反,重要科学和工程应用领域的从业者通常不知道基本原理。该项目旨在弥合这一鸿沟,开发几何和计算的创新组合。博士学生将参与研究的各个方面。该项目设想了一个统一的数学策略,基于两个双重但等价的观点:部分光滑的几何思想和识别的算法思想。利用现代变分分析的力量,该项目旨在阐明部分光滑几何如何鼓励具有理想结构(如稀疏性或低秩)的解决方案,当代流行的算法如何被吸引到(或“识别”)这样的解决方案,方法收敛的速度有多快,以及我们如何加速它们。在该项目的聚光灯下是两个激励算法,都非常有前途的计算实践。第一,一个非线性的方法,解决大规模的结构化问题,其明确的部分光滑的几何形状,它可能会利用。第二个是光滑的拟牛顿法,它对非光滑优化具有强大的但令人困惑的成功,它对任何显式几何都是盲目的,但受到它的强烈影响。该项目成功的关键将是与经典数学的其他领域相互作用;矩阵分析有丰富的潜在应用-该项目特别针对“Crouzeix猜想”。“从基础的角度来看,常见的多项式不等式可以通过分层到光滑表面来诱导部分光滑,使这个项目沉浸在半代数几何的基础中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adrian Lewis其他文献

Beneath the surface: a case report on nonencapsulated Streptococcus pneumoniae-associated invasive disease in an immunocompromised patient
表面之下:免疫功能低下患者发生非包膜肺炎链球菌相关侵袭性疾病的病例报告
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Zintgraff;N.M. Sánchez Eluchans;P. Gagetti;Celeste Martinez;Dina Pedersen;M. Moscoloni;Adrian Lewis;Claudia Lara;Alejandra Corso
  • 通讯作者:
    Alejandra Corso
Modelling malaria elimination on the internet
  • DOI:
    10.1186/1475-2875-10-191
  • 发表时间:
    2011-07-14
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Richard J Maude;Sompob Saralamba;Adrian Lewis;Dean Sherwood;Nicholas J White;Nicholas PJ Day;Arjen M Dondorp;Lisa J White
  • 通讯作者:
    Lisa J White

Adrian Lewis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adrian Lewis', 18)}}的其他基金

Semi-Structured Optimization: Geometry and Nonsmooth Algorithms
半结构化优化:几何和非光滑算法
  • 批准号:
    2006990
  • 财政年份:
    2020
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
Geometry in nonsmooth optimization
非光滑优化中的几何
  • 批准号:
    1208338
  • 财政年份:
    2012
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
Special Meeting: Foundations of Computational Mathematics
特别会议:计算数学基础
  • 批准号:
    0849383
  • 财政年份:
    2009
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
Variational Analysis for Practical Optimization
实际优化的变分分析
  • 批准号:
    0806057
  • 财政年份:
    2008
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
Applied Variational Analysis: Structure, Regularity, and Algorithms
应用变分分析:结构、规律和算法
  • 批准号:
    0504032
  • 财政年份:
    2005
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Advancing Efficient Global Optimization of Extremely Expensive Functions under Uncertainty using Structure-Exploiting Bayesian Methods
职业:使用结构利用贝叶斯方法在不确定性下推进极其昂贵的函数的高效全局优化
  • 批准号:
    2237616
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Continuing Grant
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
  • 批准号:
    23K03266
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Dynamical Structure in the Chaotic Region and Application to Trajectory Design and Optimization
混沌区域动力结构分析及其在轨迹设计与优化中的应用
  • 批准号:
    23KJ1692
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
High-throughput screening and structure-guided optimization of oligonucleotides for site-directed RNA editing by ADARs.
通过 ADAR 进行定点 RNA 编辑的寡核苷酸的高通量筛选和结构引导优化。
  • 批准号:
    10636547
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
Development of efficient algorithms using nonconvex nonsmooth optimization problem structure and their application to radio interferometers
使用非凸非光滑优化问题结构开发高效算法及其在无线电干涉仪中的应用
  • 批准号:
    23K19953
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Optimization of electronic structure of Dirac nodal-line superconductors based on phosphorous square net
基于磷方网的狄拉克节线超导体电子结构优化
  • 批准号:
    23K03328
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of new structure of nuclear fusion coil by quantum annealing and 3D topology optimization.
通过量子退火和 3D 拓扑优化创建核聚变线圈新结构。
  • 批准号:
    23K03826
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploiting Structure and Hidden Convexity in Hard, Large Scale Numerical Optimization
在困难的大规模数值优化中利用结构和隐藏凸性
  • 批准号:
    RGPIN-2018-04028
  • 财政年份:
    2022
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization of cell three-dimensional structure by computational origami and cell origami
计算折纸和细胞折纸优化细胞三维结构
  • 批准号:
    22H01423
  • 财政年份:
    2022
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Multidisciplinary Topology Optimization for Aircraft Fuselage Structure
飞机机身结构多学科拓扑优化
  • 批准号:
    574023-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 34.94万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了