EAPSI: Generating Word Embeddings using Extreme Learning Machines for Classifying Clinical Texts
EAPSI:使用极限学习机生成词嵌入来对临床文本进行分类
基本信息
- 批准号:1614024
- 负责人:
- 金额:$ 0.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Fellowship Award
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-15 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In 1950, the computer scientist Alan Turing proposed a test for true artificial intelligence. In Turing's view, a computer must be considered intelligent if it could understand human language. After more than 60 years of research, this is still an ongoing effort. Recent methods, including neural language models that use advanced statistics, have made great strides towards realizing Turing's vision. This study builds on existing research to explore methods for improving computer-based natural language understanding. The research will be conducted under the mentorship of Professor Guang-bin Huang, a noted expert on machine learning, of Nanyang Technological University.Natural language processing (NLP) involves the development of computer-based algorithms to understand natural language. Statistical language models are typically used for various NLP tasks, including machine translation and text categorization. Language models based on neural networks, also known as neural embeddings, map words (or phrases) to a numerical representation in a low-dimensional space. Typically, neural networks use back-propagation for training a neural network, which results in slow training. Extreme Learning Machines (ELM) is a type of neural network, where hidden neurons are randomly generated hidden nodes. This study involves the use of ELM for faster training in the generation of neural embeddings.This award under the East Asia and Pacific Summer Institutes program supports summer research by a U.S. graduate student and is jointly funded by NSF and the National Research Foundation of Singapore.
1950年,计算机科学家艾伦·图灵(Alan Turing)提出了一个测试真正人工智能的方法。在图灵看来,如果一台计算机能理解人类的语言,它就必须被认为是智能的。 经过60多年的研究,这仍然是一个持续的努力。最近的方法,包括使用高级统计的神经语言模型,在实现图灵的愿景方面取得了巨大进展。 这项研究建立在现有的研究基础上,探索提高基于计算机的自然语言理解的方法。 这项研究将在南洋理工大学著名机器学习专家黄光斌教授的指导下进行。自然语言处理(NLP)涉及开发基于计算机的算法来理解自然语言。统计语言模型通常用于各种NLP任务,包括机器翻译和文本分类。 基于神经网络的语言模型,也称为神经嵌入,将单词(或短语)映射到低维空间中的数值表示。通常,神经网络使用反向传播来训练神经网络,这导致训练缓慢。极限学习机(ELM)是一种神经网络,其中隐藏的神经元是随机生成的隐藏节点。这项研究涉及使用ELM来更快地训练神经嵌入的生成。该奖项属于东亚和太平洋夏季研究所计划,支持美国研究生的夏季研究,由NSF和新加坡国家研究基金会共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paula Lauren其他文献
ELMVIS+: Improved Nonlinear Visualization Technique Using Cosine Distance and Extreme Learning Machines
ELMVIS:使用余弦距离和极限学习机改进的非线性可视化技术
- DOI:
10.1007/978-3-319-28373-9_31 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Anton Akusok;Y. Miché;Kaj;Rui Nian;Paula Lauren;A. Lendasse - 通讯作者:
A. Lendasse
A Study of Course-based Undergraduate Research Experiences and the Challenges and Opportunities for Computer Science
基于课程的本科生研究经验以及计算机科学的挑战和机遇研究
- DOI:
10.1109/csce60160.2023.00168 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Paula Lauren - 通讯作者:
Paula Lauren
Reconstructing Word Representations from Pre-trained Subword Embeddings
- DOI:
10.1109/csci58124.2022.00013 - 发表时间:
2022-12 - 期刊:
- 影响因子:0
- 作者:
Paula Lauren - 通讯作者:
Paula Lauren
A low-dimensional vector representation for words using an extreme learning machine
使用极限学习机的单词低维向量表示
- DOI:
10.1109/ijcnn.2017.7966071 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Paula Lauren;Guangzhi Qu;G. Huang;P. Watta;A. Lendasse - 通讯作者:
A. Lendasse
Modelling metaphorical meaning: A systematic test of the predication algorithm
- DOI:
10.3758/s13421-024-01629-1 - 发表时间:
2024-09-04 - 期刊:
- 影响因子:2.100
- 作者:
Hamad Al-Azary;J. Nick Reid;Paula Lauren;Albert N. Katz - 通讯作者:
Albert N. Katz
Paula Lauren的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
A platform for rapidly generating live attenuated enterovirus vaccines
快速生成减毒肠道病毒活疫苗的平台
- 批准号:
24K02286 - 财政年份:2024
- 资助金额:
$ 0.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
SBIR Phase I: CAS: A light-based, energy-generating, carbon removal process
SBIR 第一阶段:CAS:基于光的能量产生碳去除过程
- 批准号:
2335596 - 财政年份:2024
- 资助金额:
$ 0.54万 - 项目类别:
Standard Grant
2022BBSRC-NSF/BIO Generating New Network Analysis Tools for Elucidating the Functional Logic of 3D Vision Circuits of the Drosophila Brain
2022BBSRC-NSF/BIO 生成新的网络分析工具来阐明果蝇大脑 3D 视觉电路的功能逻辑
- 批准号:
BB/Y000234/1 - 财政年份:2024
- 资助金额:
$ 0.54万 - 项目类别:
Research Grant
Generating green hydrogen from mining wastes
从采矿废物中产生绿色氢气
- 批准号:
IM240100202 - 财政年份:2024
- 资助金额:
$ 0.54万 - 项目类别:
Mid-Career Industry Fellowships
3D Diffusion Models for Generating and Understanding 3D Scenes
用于生成和理解 3D 场景的 3D 扩散模型
- 批准号:
DP240101926 - 财政年份:2024
- 资助金额:
$ 0.54万 - 项目类别:
Discovery Projects
Identification a novel bone-generating macrophage subset and their molecular mechanisms.
鉴定一种新型的骨生成巨噬细胞亚群及其分子机制。
- 批准号:
24K19848 - 财政年份:2024
- 资助金额:
$ 0.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
- 批准号:
23K24856 - 财政年份:2024
- 资助金额:
$ 0.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Large-Scale, Sustainable, Nutrient-Dense MicroVeg: Generating Health Evidence & Production Capacity to Support Incorporation into UK Diet
大规模、可持续、营养丰富的微型蔬菜:生成健康证据
- 批准号:
10072736 - 财政年份:2023
- 资助金额:
$ 0.54万 - 项目类别:
Collaborative R&D
Generating evidence for nature-based strategies to reduce loneliness
为基于自然的减少孤独感的策略提供证据
- 批准号:
FT220100857 - 财政年份:2023
- 资助金额:
$ 0.54万 - 项目类别:
ARC Future Fellowships
Co-creation between content-generating AI and humans based on deep learning
基于深度学习的内容生成人工智能与人类的共同创造
- 批准号:
23K04201 - 财政年份:2023
- 资助金额:
$ 0.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)