EAPSI: Extending the Scope of Mathematical Operations used as Tools to Study Rings

EAPSI:扩展数学运算的范围作为研究环的工具

基本信息

  • 批准号:
    1614318
  • 负责人:
  • 金额:
    $ 0.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Fellowship Award
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-15 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

A ring is a collection of elements that can be added, subtracted, or multiplied together, but not necessarily divided by one another. Rings appear in a wide range of areas within math and physics. The integers, the rational numbers, and polynomials are all commonly used examples of rings. A star operation is a useful tool for studying certain types of rings, particularly the properties of their multiplication. This project will extend the use of star operations to a larger category of rings than they are currently used for. This research will be conducted at Pohang University of Science and Technology in collaboration with Dr. Byung Gyun Kang, an expert in the field of commutative ring theory.Star operations are a closure operation on the ideals of a commutative ring satisfying certain axioms related to principal ideals. Commonly studied star operations are the b, t, and v operations, and they are an active area of research in multiplicative ideal theory. Star operations can also be used to construct Kronecker function rings, which are invaluable for studying valuation overrings and the topology of Zariski-Riemann spaces. They are mainly studied in the context of integral domains, and comparatively little work has been done in the case of rings with zero divisors. This project will expand the use of star operations to commutative rings with zero divisors, with an emphasis on generalizing Kronecker function rings and Zariski-Riemann spaces to that setting.This award under the East Asia and Pacific Summer Institutes program supports summer research by a U.S. graduate student and is jointly funded by NSF and the National Research Foundation of Korea.
一个环是一个元素的集合,这些元素可以加、减或乘在一起,但不一定要彼此相除。环出现在数学和物理学的广泛领域。整数、有理数和多项式都是环的常用例子。星星运算是研究某些类型的环的有用工具,特别是它们的乘法性质。该项目将把星星操作的使用范围扩大到比目前使用的更大的环类。这项研究将在浦项科技大学与交换环理论领域的专家Byung Gyun Kang博士合作进行。星星运算是交换环的理想上满足与主理想有关的某些公理的闭合运算。通常研究的星星运算是B、t和v运算,它们是乘法理想理论中的一个活跃的研究领域。星星运算也可以用来构造Kronecker函数环,这对于研究赋值覆盖环和Zerkiki-Riemann空间的拓扑是非常有价值的。它们主要是在整环的背景下研究的,而在零因子环的情况下做的工作相对较少。该项目将把星星运算的应用扩展到具有零因子的交换环,重点是将Kronecker函数环和Zorkiki-Riemann空间推广到该环境。该奖项属于东亚和太平洋夏季研究所计划,支持美国研究生的夏季研究,由NSF和韩国国家研究基金会共同资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel McGregor其他文献

Daniel McGregor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Extending the scope of ancestral sequence reconstruction for protein engineering
扩大蛋白质工程祖先序列重建的范围
  • 批准号:
    23K13889
  • 财政年份:
    2023
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Enlargement of the scope of data analysis by extending nonparametric tests
通过扩展非参数检验扩大数据分析范围
  • 批准号:
    19K06856
  • 财政年份:
    2019
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Extending the scope of PLX-R18 for H-ARS: efficacy in special populations and DEARE
扩展 PLX-R18 用于 H-ARS 的范围:在特殊人群和 DEARE 中的疗效
  • 批准号:
    10359217
  • 财政年份:
    2018
  • 资助金额:
    $ 0.54万
  • 项目类别:
Latin inscriptions in the Ashmolean Museum: influencing curatorial practice and extending educational scope to new audiences
阿什莫林博物馆的拉丁铭文:影响策展实践并将教育范围扩大到新观众
  • 批准号:
    AH/P005764/1
  • 财政年份:
    2017
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Research Grant
Keiretsu Divergence and Competitive Advantage in the Automotive Industry: Extending the Scope of Empirical Analysis in Time and Space
汽车行业的Keiretsu分歧与竞争优势:扩展时间和空间的实证分析范围
  • 批准号:
    15K03655
  • 财政年份:
    2015
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study on Introducing Software Product Line through Derivative Development and Extending Its Scope
通过衍生开发引入软件产品线并扩展其范围的研究
  • 批准号:
    24500042
  • 财政年份:
    2012
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Extending the Scope of Inference in Partially Identified Models
协作研究:扩展部分识别模型的推理范围
  • 批准号:
    1123586
  • 财政年份:
    2011
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Extending the Scope of Inference in Partially Identified Models
协作研究:扩展部分识别模型的推理范围
  • 批准号:
    1123771
  • 财政年份:
    2011
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Standard Grant
Extending the Scope of Symmetry Methods for Partial Differential Equations
扩展偏微分方程对称方法的范围
  • 批准号:
    362663-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Extending the Scope of Symmetry Methods for Partial Differential Equations
扩展偏微分方程对称方法的范围
  • 批准号:
    362663-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了