Modeling the processing of signaling cues by transcriptional networks during cell-fate choice
在细胞命运选择过程中对转录网络对信号线索的处理进行建模
基本信息
- 批准号:1615916
- 负责人:
- 金额:$ 65.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During development, cells differentiate to generate the diversity of cell types required to make a functional organism. In blood development, a single hematopoietic stem cell gives rise to about 12 distinct cell types. A hematopoietic cell's decision to choose between alternative lineages depends on both the internal state of the cell, defined by networks of lineage-specifying transcription factors, as well as external signals provided by small molecules called cytokines. Furthermore, the two systems, cytokine signaling and transcription factor networks, do not function independently of each other. This project aims to use a combination of computation and experiment to understand how the interaction between signaling and transcription factor networks controls cell-fate choice. This study will advance our understanding of cell-fate choice during blood differentiation and the insights will be relevant to other tissues and organisms. The computational tools developed during the course of research will have broad applicability in developmental biology. Educational activities aim to promote the development of the quantitative and modeling skills of biology students at the undergraduate and graduate levels. This will be accomplished by 1) developing course modules based on the research activities and making them available to the teaching community and 2) mentoring undergraduate students in research projects. Cell-autonomous gene regulatory networks and cell-extrinsic cytokine signaling have often times been viewed as competing and mutually-exclusive hypotheses for the specification of cell fate during hematopoiesis. The investigators propose instead that cell fate is an emergent property arising from interactions between cytokine signaling and gene regulatory networks. They will test this hypothesis with tightly coupled experimental and mathematical modeling activities. The research plan leverages a unique experimental tool; hematopoietic cells that can be inducibly differentiated along alternative lineages at a defined starting point to probe cytokine-transcription factor interactions in time. Aim 1 will infer the gene regulatory networks involved in the macrophage-neutrophil cell-fate decision de novo by measuring genome-wide expression at high temporal resolution and computing pair-wise mutual information. Aim 2 will build differential equation models of signaling effector/transcription factor networks to investigate how emergent dynamics are produced. The models will be predictive and allow the simulation of the effects of different cytokines and perturbations. While Aims 1 and 2 investigate the system dynamics at the network level, Aim 3 will determine how a core group of 13 transcription factor and cytokine receptor loci are regulated in time at the level of DNA sequence. Here, a novel experimental-computational approach for reverse engineering cis-regulatory module logic will be utilized to identify distal enhancers and silencers and determine how they are regulated. A comprehensive cis-regulatory module reporter library will be constructed and reporter activities will be measured in time. Time-resolved activity data will be used to constrain predictive sequence-based thermodynamic models of transcription to determine the transcription factors and protein-protein interactions regulating the modules. This study will use unique tools of the model system, time series data, and modeling to determine how gene regulatory networks process cytokine signals in a context-dependent manner. The models and reporter library will be a resource for a wide range of developmental biologists.
在发育过程中,细胞分化以产生形成功能性生物体所需的细胞类型的多样性。在血液发育中,单个造血干细胞产生约12种不同的细胞类型。造血细胞在替代谱系之间进行选择的决定取决于细胞的内部状态(由谱系特异性转录因子网络定义)以及由称为细胞因子的小分子提供的外部信号。此外,这两个系统,细胞因子信号传导和转录因子网络,并不相互独立地发挥作用。该项目旨在使用计算和实验的结合来了解信号和转录因子网络之间的相互作用如何控制细胞命运的选择。这项研究将促进我们对血液分化过程中细胞命运选择的理解,这些见解将与其他组织和生物体相关。在研究过程中开发的计算工具将在发育生物学中具有广泛的适用性。教育活动旨在促进本科生和研究生生物学学生的定量和建模技能的发展。这将通过以下方式实现:1)根据研究活动开发课程模块,并将其提供给教学社区; 2)指导研究项目中的本科生。细胞自主基因调控网络和细胞外源性细胞因子信号传导经常被视为造血过程中细胞命运的规范的竞争和互斥假设。研究人员提出,细胞命运是细胞因子信号和基因调控网络之间相互作用产生的一种新特性。他们将通过紧密耦合的实验和数学建模活动来验证这一假设。该研究计划利用了一种独特的实验工具;造血细胞,可以诱导分化沿着替代谱系在一个确定的起点,以探测丝氨酸转录因子的相互作用的时间。目标1将通过高时间分辨率的全基因组表达测量和成对互信息计算来推断参与巨噬细胞-中性粒细胞命运决定的基因调控网络。目的二将建立信号效应子/转录因子网络的微分方程模型,研究涌现动力学是如何产生的。该模型将是预测性的,并允许模拟不同细胞因子和扰动的影响。虽然目标1和2在网络水平上研究系统动力学,但目标3将确定13个转录因子和细胞因子受体位点的核心组如何在DNA序列水平上及时调节。在这里,一种新的实验-计算方法,逆向工程顺式调控模块的逻辑将被用来确定远端增强子和沉默,并确定它们是如何调节。将构建一个全面的顺式调控模块报告文库,并及时测量报告活性。时间分辨的活性数据将用于约束预测性的基于序列的转录热力学模型,以确定调节模块的转录因子和蛋白质-蛋白质相互作用。本研究将使用模型系统的独特工具、时间序列数据和建模来确定基因调控网络如何以上下文依赖的方式处理细胞因子信号。模型和报告库将成为广泛的发育生物学家的资源。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manu Manu其他文献
Manu Manu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manu Manu', 18)}}的其他基金
CAREER: Non-additive control of gene expression by long-range interactions between multiple regulatory elements
职业:通过多个调控元件之间的长程相互作用对基因表达进行非加性控制
- 批准号:
1942471 - 财政年份:2020
- 资助金额:
$ 65.93万 - 项目类别:
Continuing Grant
相似国自然基金
Sirt1通过调控Gli3 processing维持SHH信号促进髓母细胞瘤的发展及机制研究
- 批准号:82373900
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
靶向Gli3 processing调控Shh信号通路的新型抑制剂治疗儿童髓母细胞瘤及相关作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超高频超宽带系统射频基带补偿理论与技术的研究
- 批准号:61001097
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
堆栈型全光缓存研究
- 批准号:60977003
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
转录调控中起作用的细胞周期激酶的鉴定及其作用机制研究
- 批准号:30970625
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
非负矩阵分解及在盲信号处理中的应用
- 批准号:60874061
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
1A6/DRIM与NIR的相互作用及对NIR的功能调节
- 批准号:30771224
- 批准年份:2007
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
Predictive Modeling of the EGFR-MAPK pathway for Triple Negative Breast Cancer Patients
三阴性乳腺癌患者 EGFR-MAPK 通路的预测模型
- 批准号:
10402248 - 财政年份:2019
- 资助金额:
$ 65.93万 - 项目类别:
Predictive Modeling of the EGFR-MAPK pathway for Triple Negative Breast Cancer Patients
三阴性乳腺癌患者 EGFR-MAPK 通路的预测模型
- 批准号:
10612033 - 财政年份:2019
- 资助金额:
$ 65.93万 - 项目类别:
Measuring and modeling the dynamics ofpatterning in human stem cells
测量和模拟人类干细胞模式的动态
- 批准号:
10734567 - 财政年份:2019
- 资助金额:
$ 65.93万 - 项目类别:
Modeling human phosphorylation networks through kinome-wide profiling
通过全激酶组分析对人类磷酸化网络进行建模
- 批准号:
8579092 - 财政年份:2013
- 资助金额:
$ 65.93万 - 项目类别:
Modeling human phosphorylation networks through kinome-wide profiling
通过全激酶组分析对人类磷酸化网络进行建模
- 批准号:
9282656 - 财政年份:2013
- 资助金额:
$ 65.93万 - 项目类别:
Modeling human phosphorylation networks through kinome-wide profiling
通过全激酶组分析对人类磷酸化网络进行建模
- 批准号:
8860197 - 财政年份:2013
- 资助金额:
$ 65.93万 - 项目类别:
Modeling human phosphorylation networks through kinome-wide profiling
通过全激酶组分析对人类磷酸化网络进行建模
- 批准号:
8731945 - 财政年份:2013
- 资助金额:
$ 65.93万 - 项目类别:














{{item.name}}会员




