Singular solutions in gels: Cavitation and debodning
凝胶中的单一解决方案:空化和脱粘
基本信息
- 批准号:1616866
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports the ongoing research program of the Principal Investigator on modeling, analysis, and simulation of material failure in gels. Engineering devices generally consist of more than one material. Their interconnections, as well as the binding of the device to substrates, are susceptible to environmental agents that ultimately cause them to break down, leading to device failure. It is estimated that the cost of product recall in the medical device industry alone ranges between $2.5 and $5 billion annually, 50% of which is attributed to material failure. This project will investigate material fracture in polymeric materials, with a main focus on gels. The mechanism of failure in gels as well as the mathematical methods to address it are very different from those in crystalline materials. Upon placement of a polymeric material in a fluid-rich environment, such as an implanted medical device in the body, it tends to swell by absorbing water. Different materials have different swelling ratios, which cause stress to build up at the bonding interfaces and substrates. Upon reaching the stress threshold of the adhesive, the device may experience debonding. The research activities will consist of modeling, analysis, and numerical simulation of the phenomena that causes a gel to break apart from its substrate. There will be a strong and clear connection with laboratory experiments and industrial applications, especially those related to the medical device industry. Several graduate and undergraduate students will be involved in the research.Understanding material fracture, its initiation and evolution, remains one of the main challenges in materials science. From the mathematical point of view, the study of debonding requires dealing with singular solutions, in cases when standard mechanical assumptions fail. This project will develop and apply combined tools from calculus of variations, geometric measure theory, asymptotic analysis, and free boundary problems for partial differential equations to provide a mathematical description of how microdefects present in the material may evolve into cavities that grow and cause the material to detach from a substrate. The main mathematical difficulty in the study of cavitation is the loss of injectivity of the deformation map that transforms a point in the reference configuration into a cavity surface. The application of tools from measure theory, such as the distributional determinant, allows validation of the governing equations in the singular frameworks. The research will provide a unified framework to study cavitation and debonding, and the evolution from the former to the latter. The project will focus on studying singularities that form in gels, assumed to be mixtures of polymer and fluid. Swelling of a gel sample attached to a substrate may produce the necessary force for singularities to form. The analysis of delamination will be based on the conjecture that there are two relevant parameters, geometric and material, able to describe the optimal energy of the body in terms of the length of detachment from the substrate. One goal is to show that stress concentrations at interfaces correspond to shearing.
该奖项支持主要研究者正在进行的关于凝胶材料失效建模、分析和模拟的研究计划。 工程器械通常由一种以上的材料组成。 它们的互连以及器件与衬底的结合容易受到环境因素的影响,最终导致它们分解,从而导致器件故障。 据估计,仅医疗器械行业的产品召回成本每年就在25亿至50亿美元之间,其中50%归因于材料故障。 本项目将研究聚合物材料中的材料断裂,主要关注凝胶。 凝胶中的失效机制以及解决它的数学方法与结晶材料中的失效机制非常不同。 在将聚合物材料放置在富含流体的环境中时,例如在体内植入的医疗装置,其倾向于通过吸收水而膨胀。 不同的材料具有不同的膨胀率,这导致应力在结合界面和基底处积聚。 在达到粘合剂的应力阈值时,装置可能经历剥离。 研究活动将包括建模,分析和数值模拟的现象,导致凝胶从其基板分开。 与实验室实验和工业应用,特别是与医疗器械行业相关的应用,将有强烈而明确的联系。 一些研究生和本科生将参与这项研究。理解材料断裂,它的起源和演变,仍然是材料科学的主要挑战之一。 从数学的角度来看,研究脱粘需要处理奇异的解决方案,在标准的力学假设失败的情况下。 该项目将开发和应用变分法,几何测量理论,渐近分析和偏微分方程的自由边界问题的组合工具,以提供材料中存在的微缺陷如何演变成生长并导致材料从衬底分离的空腔的数学描述。 在空化研究中的主要数学困难是将参考配置中的点转换成空腔表面的变形映射的注入性的损失。 从测量理论的工具,如分布行列式的应用,允许验证的奇异框架中的控制方程。 本文的研究将为研究空化和脱粘以及从空化到脱粘的演变提供一个统一的框架。 该项目将重点研究凝胶中形成的奇异性,假设凝胶是聚合物和流体的混合物。 附着在基底上的凝胶样品的溶胀可以产生形成奇点所必需的力。 分层的分析将基于这样的推测,即存在两个相关参数,几何参数和材料参数,能够根据从基底分离的长度来描述主体的最佳能量。 一个目标是表明在界面处的应力集中对应于剪切。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria-Carme Calderer其他文献
Maria-Carme Calderer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria-Carme Calderer', 18)}}的其他基金
Collaborative Research: Topology and Infection Dynamics of Bacteriophage Viruses
合作研究:噬菌体病毒的拓扑结构和感染动力学
- 批准号:
2318051 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: DNA Packing of Bacteriophages: Liquid Crystal Modeling through Analysis, Knot Theory and Numerical Simulation
合作研究:噬菌体的 DNA 包装:通过分析、结理论和数值模拟进行液晶建模
- 批准号:
1816740 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Materials Engineering of Columnar and Living Liquid Crystals via Experimental Characterization, Mathematical Modeling, and Simulation
DMREF:协作研究:通过实验表征、数学建模和仿真进行柱状和活性液晶材料工程
- 批准号:
1729589 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mathematics and Mechanics in the 22nd Century: Seven Decades and Counting...
22 世纪的数学和力学:七个十年且仍在继续......
- 批准号:
1542200 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Materials engineering of chromonic and colloidal liquid crystals via mathematical modeling and simulation
DMREF/合作研究:通过数学建模和模拟进行有色和胶体液晶的材料工程
- 批准号:
1435372 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Flow, Geometric Motion, Deformation and Mass Transport in Materials Science and Physiological Processes
材料科学和生理过程中的流动、几何运动、变形和质量传递
- 批准号:
1261325 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mathematical Problems at the Interface between Materials Science and Biology: Polyelectrolyte gels, Devices and Physiological Applications
材料科学与生物学交叉口的数学问题:聚电解质凝胶、装置和生理学应用
- 批准号:
1211896 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Travel Grants to the Meeting on Emerging Topics in Dynamical Systems and Partial Differential Equations
动力系统和偏微分方程新兴主题会议的旅费补助
- 批准号:
1005171 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
GOALI: Modeling, analysis and numerical simulations of gels in the biomedical industry
目标:生物医学行业凝胶的建模、分析和数值模拟
- 批准号:
1009181 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Modeling, Analysis and Applications of Coupled Elasticity and Liquid Crystal Effects
弹性耦合和液晶效应的建模、分析和应用
- 批准号:
0909165 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
无穷维哈密顿系统的KAM理论
- 批准号:10771098
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Application of a new thermodynamic model to the swelling behaviour of poly(N-isopropylacrylamide) gels in aqueous solutions of alcohols
新的热力学模型在醇水溶液中聚(N-异丙基丙烯酰胺)凝胶溶胀行为的应用
- 批准号:
272101716 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Research Grants
Organic solvent solutions behaving like surfactants or polymer gels
有机溶剂溶液的行为类似于表面活性剂或聚合物凝胶
- 批准号:
15K05400 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Surface-covering gels for broad-spectrum antimicrobial protection following open
表面覆盖凝胶可在开瓶后提供广谱抗菌保护
- 批准号:
8647241 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Antimicrobial-releasing gels for preventing infection in total joint arthroplasty
用于预防全关节置换术中感染的抗菌释放凝胶
- 批准号:
8453783 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Derivation of Functional Neurons from Human Adult Cells by Nonviral Gene Delivery
通过非病毒基因传递从人类成体细胞衍生功能神经元
- 批准号:
8315979 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Derivation of Functional Neurons from Human Adult Cells by Nonviral Gene Delivery
通过非病毒基因传递从人类成体细胞衍生功能神经元
- 批准号:
8440296 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Isolation Selection and Polony Amplification of Single Cells in a Gel Matrix
凝胶基质中单细胞的分离选择和聚合体扩增
- 批准号:
8118229 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别: