NeTS: Small: Collaborative Research: Rethinking Erasure Codes for Cloud Storage: A Quantitative Framework for Latency, Reliability, and Cost Optimization
NeTS:小型:协作研究:重新思考云存储纠删码:延迟、可靠性和成本优化的定量框架
基本信息
- 批准号:1618335
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to develop an analytical framework that quantifies tail latency and reliability of erasure-coded storage through investigation of novel scheduling and repair strategies, mandating rethinking of erasure codes for online storage. As erasure coding is increasingly adopted by large-scale storage systems such as Microsoft Azure and Facebook, conventional approaches that primarily rely on system design heuristics has become inadequate in pushing the performance boundaries in terms of latency and reliability optimization. Quantifying tail latency and reliability of an erasure-coded storage that employs dynamic workload scheduling and online repair is an open problem. There exists little work illuminating the design space via mathematical crystallization of key tradeoffs and associated engineering "control knobs". This project will enable a joint optimization of latency, reliability and storage cost, which mandates rethinking of erasure-coded storage optimization and service pricing models. This proposal will concentrate on the following specific aspects: (1) Investigating a family of new probabilistic scheduling policies and extend order statistic analysis to derive closed-form bounds on tail latency for erasure-coded storage with arbitrary configurations, general service-time distributions, and potentially differentiated service classes. (2) Through a novel reliability metric, Time to Data Loss, The research will investigate online repair strategies that significantly improve reliability using a class of bandwidth-efficient codes, enabling a tradeoff between repair timeliness and reliability optimization. (3) Employ the theoretical analysis in this research to pursue a holistic solution that jointly optimizes reliability, latency, and storage costs over seven key control dimensions: choice of erasure codes, chunk placement, network resource allocation, cache management, dynamic scheduling, pricing, and online repair strategy. (4) Integrate the proposed framework with current cloud systems to bridge the gap between the theoretical results and practical systems. By developing new analytical models and algorithms for joint optimization of latency, reliability, and storage cost, the project will mandate rethinking of erasure-coded storage design and service pricing models. It will produces novel, interdisciplinary curriculum modules for teaching both these theories and systems.
该项目旨在开发一个分析框架,该框架通过调查新颖的调度和维修策略来量化擦除编码存储的尾巴潜伏期和可靠性,从而强制重新考虑擦除擦除代码以进行在线存储。由于诸如Microsoft Azure和Facebook之类的大规模存储系统越来越多地采用了擦除编码,因此主要依赖系统设计启发式方法的常规方法已经不足以在延迟和可靠性优化方面突破性能界限。使用动态工作负载调度和在线维修的擦除编码存储的尾巴潜伏期和可靠性是一个开放的问题。通过数学结晶和关联的工程“控制旋钮”,几乎没有工作来照亮设计空间。该项目将实现延迟,可靠性和存储成本的联合优化,这要求重新思考擦除编码的存储优化和服务定价模型。该提案将集中在以下特定方面:(1)调查一个新的概率调度策略家庭,并扩展订单统计分析,以在擦除层潜伏期的封闭形式范围内,以使用任意配置,一般服务时间分布以及潜在差异化的服务类别的擦除编码存储。 (2)通过新颖的可靠性指标,数据丢失的时间,研究将调查在线维修策略,这些维修策略通过一类带宽效率的代码可显着提高可靠性,从而在维修及时性和可靠性优化之间进行权衡。 (3)在本研究中采用理论分析来追求一个整体解决方案,该解决方案共同优化了七个关键控制维度的可靠性,延迟和存储成本:选择擦除代码,块位置,网络资源分配,缓存管理,动态调度,定价,定价和在线维修策略。 (4)将提出的框架与当前的云系统集成在一起,以弥合理论结果与实际系统之间的差距。通过开发新的分析模型和算法,以优化延迟,可靠性和存储成本的联合优化,该项目将要求重新思考擦除编码的存储设计和服务定价模型。它将生成新颖的跨学科课程模块,用于教授这些理论和系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vaneet Aggarwal其他文献
An Intelligent Learning Approach to Achieve Near-Second Low-Latency Live Video Streaming under Highly Fluctuating Networks
网络高波动下实现近秒低延时视频直播的智能学习方法
- DOI:
10.1145/3581783.3612154 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Guanghui Zhang;Ke Liu;Mengbai Xiao;Bingshu Wang;Vaneet Aggarwal - 通讯作者:
Vaneet Aggarwal
Learning General Parameterized Policies for Infinite Horizon Average Reward Constrained MDPs via Primal-Dual Policy Gradient Algorithm
通过原始对偶策略梯度算法学习无限视野平均奖励约束 MDP 的通用参数化策略
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Qinbo Bai;Washim Uddin Mondal;Vaneet Aggarwal - 通讯作者:
Vaneet Aggarwal
Boundary representation compatible feature recognition for manufacturing CAD models
制造 CAD 模型的边界表示兼容特征识别
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.9
- 作者:
Xingyu Fu;Dheeraj Peddireddy;Fengfeng Zhou;Yuting Xi;Vaneet Aggarwal;Xingyu Li;Martin Byung - 通讯作者:
Martin Byung
Preemptive scheduling on unrelated machines with fractional precedence constraints
- DOI:
10.1016/j.jpdc.2021.07.010 - 发表时间:
2021-11-01 - 期刊:
- 影响因子:
- 作者:
Vaneet Aggarwal;Tian Lan;Dheeraj Peddireddy - 通讯作者:
Dheeraj Peddireddy
Integrating reinforcement-learning-based vehicle dispatch algorithm into agent-based modeling of autonomous taxis
将基于强化学习的车辆调度算法集成到基于代理的自动驾驶出租车建模中
- DOI:
10.1007/s11116-023-10433-w - 发表时间:
2023 - 期刊:
- 影响因子:4.3
- 作者:
Zequn Li;M. Lokhandwala;Abubakr O. Al;Vaneet Aggarwal;Hua Cai - 通讯作者:
Hua Cai
Vaneet Aggarwal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vaneet Aggarwal', 18)}}的其他基金
Conference: NSF WORKSHOP ON POST-QUANTUM AI
会议:美国国家科学基金会后量子人工智能研讨会
- 批准号:
2326996 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Sequential Decision Making Under Uncertainty With Submodular Rewards
合作研究:CIF:小:不确定性下的顺序决策与子模奖励
- 批准号:
2149588 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Communications with Energy Harvesting Nodes
CIF:小型:协作研究:与能量收集节点的通信
- 批准号:
1527486 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
- 批准号:61661005
- 批准年份:2016
- 资助金额:30.0 万元
- 项目类别:地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
- 批准号:61301143
- 批准年份:2013
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
- 批准号:81072465
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
基于小世界网络的传感器网络研究
- 批准号:60472059
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343618 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312138 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312139 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Reliable Task Offloading in Mobile Autonomous Systems Through Semantic MU-MIMO Control
合作研究:NeTS:小型:通过语义 MU-MIMO 控制实现移动自治系统中的可靠任务卸载
- 批准号:
2134973 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant