Data-driven Modeling of Equilibrium and Non-equilibrium Statistics
均衡和非均衡统计的数据驱动建模
基本信息
- 批准号:1619661
- 负责人:
- 金额:$ 30.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An important issue in applied and computational sciences is to find the essential reduced models to predict variables of interests from high-dimensional complex dynamical systems. Given our advanced capability to collect big data, an important challenge is to leverage the information carried by the data to improve the modeling effort. Computationally, this requires adequate inference of appropriate parameters such that their uncertainties are quantifiable. A much more challenging yet important issue is to be able to make prediction in the presence of external disturbances. This problem has a wide range of applications such as in climate change science where one is interested to predict the climate change statistics corresponding to exogenous forcing such as the volcanic eruptions or even the anthropogenic factor such as the human activities. The projects in this proposal are to address these issues. While the developed methodology is aimed for general modeling of multi-scale phenomena, our focus will be to improve the understanding and prediction of the deformation behavior of graphene. Two projects are proposed: 1. Data-driven reduced modeling paradigms to capture coarse grained statistical solutions of the underlying dynamics. The methodology involves the Mori-Zwanzig formalism, a precise description of the memory effect to take into account the interactions between processes occurring on different physical scales, and a data-driven numerical scheme for estimating the parameters of the stochastic reduced model. 2. Estimation of parameters in the reduced models to predict changes on the statistical solutions in the presence of small external disturbances. This project involves employing the Padè approximation on appropriate integral operators and designing efficient algorithm to solve a system of nonlinear equations that respect appropriate equilibrium statistics of the unperturbed data, leveraging the formulation from the fluctuation-dissipation theory.
应用和计算科学中的一个重要问题是找到必要的简化模型来预测高维复杂动力系统中感兴趣的变量。鉴于我们收集大数据的先进能力,一个重要的挑战是利用数据携带的信息来改进建模工作。在计算上,这需要对适当的参数进行充分的推断,以便它们的不确定性是可量化的。一个更具挑战性但更重要的问题是能够在存在外部干扰的情况下进行预测。这一问题具有广泛的应用,例如在气候变化科学中,人们有兴趣预测与火山爆发等外源强迫甚至人类活动等人为因素相对应的气候变化统计数据。本提案中的项目旨在解决这些问题。虽然所开发的方法旨在对多尺度现象进行一般建模,但我们的重点将是提高对石墨烯变形行为的理解和预测。提出了两个项目: 1. 数据驱动的简化建模范例,以捕获底层动态的粗粒度统计解决方案。该方法涉及 Mori-Zwanzig 形式主义、对记忆效应的精确描述,以考虑不同物理尺度上发生的过程之间的相互作用,以及用于估计随机简化模型参数的数据驱动的数值方案。 2. 估计简化模型中的参数,以预测存在小的外部干扰时统计解的变化。该项目涉及在适当的积分算子上采用 Padè 近似,并设计有效的算法来求解非线性方程组,该方程组尊重未扰动数据的适当平衡统计,利用波动耗散理论的公式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Harlim其他文献
John Harlim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Harlim', 18)}}的其他基金
Data-driven statistical dynamical modeling: Shortage of training data and high- dimensionality
数据驱动的统计动态建模:训练数据短缺和高维
- 批准号:
2207328 - 财政年份:2022
- 资助金额:
$ 30.09万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Non-Smooth Geometry, Spectral Theory, and Data: Learning and Representing Projections of Complex Systems
FRG:协作研究:非光滑几何、谱理论和数据:学习和表示复杂系统的投影
- 批准号:
1854299 - 财政年份:2019
- 资助金额:
$ 30.09万 - 项目类别:
Standard Grant
Practical Filtering Methods with Model Errors
具有模型误差的实用过滤方法
- 批准号:
1317919 - 财政年份:2013
- 资助金额:
$ 30.09万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
- 批准号:
23K25946 - 财政年份:2024
- 资助金额:
$ 30.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
$ 30.09万 - 项目类别:
Standard Grant
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
- 批准号:
2404369 - 财政年份:2024
- 资助金额:
$ 30.09万 - 项目类别:
Standard Grant
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
- 批准号:
2404368 - 财政年份:2024
- 资助金额:
$ 30.09万 - 项目类别:
Standard Grant
IHBEM: Empirical analysis of a data-driven multiscale metapopulation mobility network modeling infection dynamics and mobility responses in rural States
IHBEM:对数据驱动的多尺度集合人口流动网络进行实证分析,对农村国家的感染动态和流动反应进行建模
- 批准号:
2327862 - 财政年份:2023
- 资助金额:
$ 30.09万 - 项目类别:
Continuing Grant
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
- 批准号:
23H01250 - 财政年份:2023
- 资助金额:
$ 30.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
$ 30.09万 - 项目类别:
Standard Grant
CAREER: Data-driven Multiscale Modeling of Complex Traffic Systems Utilizing Networked Driving Simulators
职业:利用网络驾驶模拟器对复杂交通系统进行数据驱动的多尺度建模
- 批准号:
2238359 - 财政年份:2023
- 资助金额:
$ 30.09万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223985 - 财政年份:2023
- 资助金额:
$ 30.09万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223986 - 财政年份:2023
- 资助金额:
$ 30.09万 - 项目类别:
Standard Grant














{{item.name}}会员




