Collaborative Research: Revealing the Geometry of Spatio-temporal Chaos with Computational Topology: Theory, Numerics and Experiments
合作研究:用计算拓扑揭示时空混沌的几何:理论、数值和实验
基本信息
- 批准号:1622113
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The weather we experience is driven by convection, sunlight warms the earth which heats the atmosphere which is cooled by the cold temperatures of outer space. Most people are not interested in microscopic behavior, for example the behavior of the individual molecules in the air, nor macroscopic behavior, such as worldwide average temperature. What is of interest are mesoscopic patterns, for example weather fronts which result in local changes in temperature. This interest in mesoscopic, as opposed to micro- or macroscopic features, of large scale systems occurs in a wide variety of complex large scale physical phenomena such as combustion in engines, dynamics of biomass in the oceans, ventricle fibrillation in a human heart, etc. These mesoscopic patterns take on many different shapes and sizes and change with time, sometimes slowly and sometimes rapidly. The form of these patterns and how they evolve in time is often very dependent on parameters. New technologies are greatly increasing our abilities to measure and simulate these physical phenomena, resulting in enormous data sets, but our ability to extract and quantify this information in a way that leads to understanding, predictability, and control of these systems is not keeping pace. We will explore the use of new mathematical tools to address this problem.The spatial and temporal complexity of Rayleigh-Bénard convection produces high dimensional time series data. A relatively new algebraic topological tool called Persistent Homology will be used to provide new tools for nonlinear dimension reduction. To ensure the applicability of these methods and that physically important mesoscopic features of the dynamics are preserved they will be developed in conjunction with the further development of carefully controlled high precision convection experiments and state-of-the-art, large scale, high-resolution numerical simulations of the Boussinesq equations. This includes the analysis of the geometry of covariant Lyapunov exponents. The new computational tools developed in this work should find broad application in a wide variety of problems involving complex nonequilibrium systems in nature (oceanic and atmospheric flows, climate and weather forecasting) and in technology (nonlinear optical systems, combustion and chemical reactions) where understanding and prediction of complex behavior is desired.
我们经历的天气是由对流驱动的,阳光使地球变暖,而地球又加热了大气,而大气则因外层空间的寒冷温度而冷却。大多数人对微观行为不感兴趣,例如空气中单个分子的行为,也不对宏观行为感兴趣,例如全球平均温度。令人感兴趣的是介观模式,例如导致局部温度变化的天气锋面。相对于大规模系统的微观或宏观特征,人们对介观的这种兴趣出现在各种复杂的大规模物理现象中,例如发动机的燃烧、海洋中的生物质动力学、人体心脏的心室颤动等。这些介观模式具有许多不同的形状和大小,并随时间变化,有时缓慢,有时迅速。这些模式的形式以及它们如何在时间上演变通常非常依赖于参数。新技术正在极大地提高我们测量和模拟这些物理现象的能力,产生了巨大的数据集,但我们提取和量化这些信息的能力并没有跟上步伐,这些信息能够导致对这些系统的理解、预测和控制。我们将探索使用新的数学工具来解决这个问题。Rayleigh-Bénard对流的时空复杂性产生了高维时间序列数据。一个相对较新的称为持久同调的代数拓扑工具将被用来为非线性降维提供新的工具。为了确保这些方法的适用性和保留动力学的物理上重要的介观特征,它们将与精心控制的高精度对流实验和最先进的、大规模、高分辨率的Boussinesq方程数值模拟的进一步发展结合在一起开发。这包括协变Lyapunov指数的几何分析。在这项工作中开发的新的计算工具应该在涉及自然界(海洋和大气流动、气候和天气预报)和技术(非线性光学系统、燃烧和化学反应)中复杂的非平衡系统的各种问题中得到广泛的应用,其中需要了解和预测复杂的行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Schatz其他文献
Asup2/supBCD: a concise guide for asthma management
哮喘管理简明指南
- DOI:
10.1016/s2213-2600(22)00490-8 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:32.800
- 作者:
Marek Lommatzsch;Guy G Brusselle;Mark L Levy;G Walter Canonica;Ian D Pavord;Michael Schatz;Johann Christian Virchow - 通讯作者:
Johann Christian Virchow
Radiographic contrast media infusions. Measurement of histamine, complement, and fibrin split products and correlation with clinical parameters.
放射线造影剂输注。
- DOI:
- 发表时间:
1979 - 期刊:
- 影响因子:14.2
- 作者:
R. Simon;Michael Schatz;D. D. Stevenson;Norvelle Curry;Frank Yamamoto;E F Plow;Johannes Ring;Carlos M. Arroyave - 通讯作者:
Carlos M. Arroyave
Needs assessment survey for a food allergy control tool
- DOI:
10.1016/j.jaip.2018.09.035 - 发表时间:
2019-02-01 - 期刊:
- 影响因子:
- 作者:
Elizabeth Lippner;Scott H. Sicherer;Michael H. Land;Michael Schatz;Chitra Dinakar - 通讯作者:
Chitra Dinakar
Measuring the effect of asthma control on exacerbations and health resource use
- DOI:
10.1016/j.jaci.2015.04.046 - 发表时间:
2015-11-01 - 期刊:
- 影响因子:
- 作者:
Patrick W. Sullivan;Jonathan D. Campbell;Gary Globe;Vahram H. Ghushchyan;Bruce Bender;Michael Schatz;Yun Chon;J. Michael Woolley;David J. Magid - 通讯作者:
David J. Magid
Methylparaben immediate hypersensitivity is a rare cause of false positive local anesthetic provocative dose testing
- DOI:
10.1016/s0091-6749(02)81574-3 - 发表时间:
2002-01-01 - 期刊:
- 影响因子:
- 作者:
Eric Macy;Michael Schatz;Robert S Zeiger - 通讯作者:
Robert S Zeiger
Michael Schatz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Schatz', 18)}}的其他基金
Collaborative Research: EAGER: Unraveling the Nature and Onset of Instabilities in Suspension Flows
合作研究:EAGER:揭示悬浮液流动不稳定性的本质和发生
- 批准号:
2230893 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Graduate Teaching Assistant Professional Development (GTA-PD) Workshop
研究生助教专业发展(GTA-PD)研讨会
- 批准号:
1647516 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: Algorithms for single molecule sequence analysis
职业:单分子序列分析算法
- 批准号:
1627442 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CAREER: Algorithms for single molecule sequence analysis
职业:单分子序列分析算法
- 批准号:
1350041 - 财政年份:2014
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
REU Site: CSHL NSF-REU Bioinformatics and Computational Biology Summer Undergraduate Program
REU 网站:CSHL NSF-REU 生物信息学和计算生物学暑期本科项目
- 批准号:
1156643 - 财政年份:2012
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Hands-On Research: Complex Systems Advanced Study Institute (China)
实践研究:复杂系统高等研究院(中国)
- 批准号:
1132192 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CDI-TYPE II--COLLABORATIVE RESEARCH: Using Algebraic Topology to Connect Models with Measurements in Complex Nonequilibrium Systems
CDI-TYPE II——协作研究:使用代数拓扑将模型与复杂非平衡系统中的测量联系起来
- 批准号:
1125302 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Transforming Homework into Cyberlearning in an Introductory STEM Course
在 STEM 入门课程中将家庭作业转变为网络学习
- 批准号:
0942076 - 财政年份:2009
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Laboratory Studies of Exact Coherent Structures in Wall Turbulence
壁湍流中精确相干结构的实验室研究
- 批准号:
0853691 - 财政年份:2009
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Institutionalizing a Reform Curriculum in Large Universities
合作研究:将大型大学的改革课程制度化
- 批准号:
0618519 - 财政年份:2006
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
- 批准号:
2320259 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
- 批准号:
2320260 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344214 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: RESEARCH PGR: The epigenomic selfing syndrome: revealing the impact of breeding system on epigenomes
合作研究:研究 PGR:表观基因组自交综合症:揭示育种系统对表观基因组的影响
- 批准号:
2247915 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Revealing the changing trophic niches of large herbivorous fish on modern coral reefs using an interdisciplinary approach
合作研究:利用跨学科方法揭示现代珊瑚礁上大型草食性鱼类营养生态位的变化
- 批准号:
2232883 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Revealing the changing trophic niches of large herbivorous fish on modern coral reefs using an interdisciplinary approach
合作研究:利用跨学科方法揭示现代珊瑚礁上大型草食性鱼类营养生态位的变化
- 批准号:
2232882 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: RESEARCH PGR: The epigenomic selfing syndrome: revealing the impact of breeding system on epigenomes
合作研究:研究 PGR:表观基因组自交综合症:揭示育种系统对表观基因组的影响
- 批准号:
2247914 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Revealing Strengthening and Toughening Mechanisms in Coconut Endocarp through Integrated Multiscale Modeling and Characterization
合作研究:通过综合多尺度建模和表征揭示椰子内果皮的强化和增韧机制
- 批准号:
2316676 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Revealing the changing trophic niches of large herbivorous fish on modern coral reefs using an interdisciplinary approach
合作研究:利用跨学科方法揭示现代珊瑚礁上大型草食性鱼类营养生态位的变化
- 批准号:
2232881 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant