SBIR Phase I: Developing Nanopores to Facilitate Delivery of Intracellular Cryoprotectants for Biopreservation at Low Temperature
SBIR 第一阶段:开发纳米孔以促进细胞内冷冻保护剂的递送以实现低温生物保存
基本信息
- 批准号:1622240
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This SBIR Phase I project aims to develop a cutting-edge nanotechnology that will greatly enhance biological preservation of regenerative medicines such as stem cells, complex tissues, and organs. Such a technology has the potential to changing regenerative healthcare forever. It would change biobanking for on-demand cells and tissues and improve mass trauma care and advanced personalized medical procedures. Biopreservation is required in regenerative medicine at nearly all levels in the acquisition of source material, isolation, storage and shipment of a final product to patient. Yet, critically, the field lacks the ability to safely and efficiently preserve these tissues and medicines severely limiting product shelf life. Nowhere is the absence of a biobanking technology more palpable than organ transplantation, where the time window between donor and recipient (4-7 hours) is not enough to properly match donations, screen for pathogens, or transport distances. More people will die from premature organ failure than cancer. Enabling the United States to safely bank organs at subzero temperature will significantly enhance national healthcare. The US faces strong commercial and competitiveness reasons to invest in all facets of regenerative medicine, including organ therapies. Cryopreservation solutions would indirectly enable significant savings to the healthcare system, the patient, and healthcare insurance companies with the cost savings from regenerative medicine treatments estimated to be nearly $250 billion per year in the U.S. The cytotoxicity of current biopreservation techniques is largely associated with inefficient cryoprotective agent and water delivery across the cell membrane during cooling leading to irreparable cell damage from ice formation. The goal of this project is to establish a fundamentally different approach to cryoprotective agent optimization by developing first-in-the-field bioinspired nanopores as transmembrane mega highways to facilitate safe and efficient intracellular delivery and removal of cryoprotective agents during cryopreservation. Past research has demonstrated the reliability of constructing well-defined nanotubular assemblies via the enforced stacking of shape-persistent macrocycles based on the interplay of multiple hydrogen-bonding, dipole-dipole, and aromatic pi-pi stacking interactions and their self-insertion into lipid bilayers. These rationally designed organic nanopores will serve as selective transmembrane channels when protein channels malfunction at or below 3 °C. As a result, the cell's exposure time to reach ice-free cryopreservation temperature will be significantly reduced. Post-preservation cell yield and viability will be greatly improved by reducing intracellular ice formation. Upon rewarming, these organic nanopores will facilitate rapid removal of the cryoprotective agents. At physiological temperature, the nanopores will seal off, and be washed out from the system resulting in low toxicity. Nanopore function and effect will be examined using liposome-based glucose transport, cell-based toxicity and cell-based cryopreservation assays.
SBIR第一阶段项目旨在开发一种尖端的纳米技术,该技术将大大增强再生药物(如干细胞、复杂组织和器官)的生物保存。这种技术有可能永远改变再生医疗保健。它将改变按需细胞和组织的生物库,改善大规模创伤护理和先进的个性化医疗程序。在再生医学中,几乎在源材料的获取、分离、储存和最终产品运输到患者的所有层面都需要生物保存。然而,关键的是,该领域缺乏安全有效地保存这些组织和药物的能力,严重限制了产品的保质期。没有任何地方比器官移植更明显地缺乏生物库技术,供体和受体之间的时间窗口(4-7小时)不足以正确匹配捐赠,筛查病原体或运输距离。更多的人将死于过早的器官衰竭而不是癌症。 使美国能够在零度以下的温度下安全地储存器官将大大提高国家医疗保健水平。 美国面临着强大的商业和竞争力理由,投资于再生医学的各个方面,包括器官治疗。冷冻保存解决方案将间接为医疗保健系统、患者和医疗保险公司,从再生医学治疗中节省的成本估计接近100万美元。目前生物保存技术的细胞毒性主要与冷却期间低效的冷冻保护剂和水输送穿过细胞膜相关,导致不可修复的细胞损伤。冰形成的伤害。该项目的目标是通过开发该领域的第一个生物启发纳米孔作为跨膜巨型高速公路,以促进冷冻保存期间冷冻保护剂的安全有效的细胞内递送和去除,来建立一种根本不同的冷冻保护剂优化方法。过去的研究已经证明了通过基于多个氢键、偶极-偶极和芳香族π-π堆叠相互作用的相互作用以及它们自插入脂质双层的形状持久性大环的强制堆叠来构建定义明确的纳米管组装体的可靠性。这些合理设计的有机纳米孔将在蛋白质通道在或低于3 °C时发生故障时作为选择性跨膜通道。因此,细胞达到无冰冷冻保存温度的暴露时间将显着减少。通过减少细胞内冰的形成,保存后的细胞产量和活力将大大提高。在复温时,这些有机纳米孔将有助于快速去除冷冻保护剂。在生理温度下,纳米孔将封闭,并从系统中冲洗出来,导致低毒性。将使用基于脂质体的葡萄糖转运、基于细胞的毒性和基于细胞的冷冻保存测定来检查纳米孔功能和效果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoxi Wei其他文献
Decoding Missense Variants by Incorporating Phase Separation via Machine Learning
通过机器学习结合相分离解码错义变体
- DOI:
10.1038/s41467-024-52580-3 - 发表时间:
2024-09-27 - 期刊:
- 影响因子:15.700
- 作者:
Mofan Feng;Xiaoxi Wei;Xi Zheng;Liangjie Liu;Lin Lin;Manying Xia;Guang He;Yi Shi;Qing Lu - 通讯作者:
Qing Lu
Discontinuous galerkin finite element method for a forward-backward heat equation
正向热方程和反向热方程的间断伽辽金有限元法
- DOI:
10.1007/s11766-005-0042-4 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Hong Li;Xiaoxi Wei - 通讯作者:
Xiaoxi Wei
Puerarin alleviates silicon dioxide-induced pulmonary inflammation and fibrosis via improving Autophagolysosomal dysfunction in alveolar macrophages of murine mice
葛根素通过改善小鼠肺泡巨噬细胞自噬溶酶体功能障碍减轻二氧化硅诱导的肺部炎症和纤维化
- DOI:
10.1016/j.intimp.2025.114375 - 发表时间:
2025-04-16 - 期刊:
- 影响因子:4.700
- 作者:
Wei Su;Shuwen Gong;Yi Luo;Xinyu Ma;Xiaoxi Wei;Yining Song;Qiuyi Chen;Hong Xu;Changyong Ke;Hailan He;Fuhai Shen;Jinlong Li - 通讯作者:
Jinlong Li
From The Arctic Ocean to Industry: X-THERMA’s Biomimetic Cryoprotective Nanomaterial
从北冰洋到工业:X-THERMA 的仿生冷冻保护纳米材料
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Xiaoxi Wei;Mark Kline;Adam Childs;L. Ceo - 通讯作者:
L. Ceo
Effects of dietary conjugated linoleic acids on the growth and quality of large yellow croaker fish Pseudosciaena crocea (Richardson) in cages.
日粮共轭亚油酸对网箱大黄鱼生长和品质的影响。
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:1.3
- 作者:
Weiguo Sang;Xiaoxi Wei;Huihui Wu - 通讯作者:
Huihui Wu
Xiaoxi Wei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoxi Wei', 18)}}的其他基金
SBIR Phase II: Dynamic Nanopores Enabling Non-toxic Cryopreservation to Advance Centralized Manufacturing & Transport of Regenerative Medicines
SBIR 第二阶段:动态纳米孔实现无毒冷冻保存以推进集中制造
- 批准号:
1831084 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: Developing an Indoor Method to Produce Morel Mushroom Fruiting Bodies
SBIR 第一阶段:开发生产羊肚菌子实体的室内方法
- 批准号:
2325697 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: Developing scale-up manufacturing of engineered waste coal ash based lightweight aggregate for concrete applications
SBIR 第二阶段:开发用于混凝土应用的工程废粉煤灰基轻质骨料的规模化生产
- 批准号:
2321815 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase II: A Blockchain Ecosystem for Encrypting Real World Data and Developing Artificial Intelligence to Optimize Pharmacy Prior Authorization
SBIR 第二阶段:用于加密现实世界数据和开发人工智能以优化药房预授权的区块链生态系统
- 批准号:
2200163 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Developing an Automated Outbound Packing System
SBIR 第一阶段:开发自动化出库包装系统
- 批准号:
2223089 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Developing Artificial intelligence Models to Predict In-hospital Clinical Trajectories for Heart Failure Patients
SBIR 第一阶段:开发人工智能模型来预测心力衰竭患者的院内临床轨迹
- 批准号:
2304358 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Artificial Intelligence (AI)-powered platform for evaluating and developing cultural competence and diversity, equity and inclusion awareness
SBIR 第一阶段:人工智能(AI)驱动的平台,用于评估和发展文化能力以及多样性、公平和包容意识
- 批准号:
2303937 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Developing Vibrational spectroscopy with metasurface optics (VISMO) for label-free, high-resolution, high-throughput protein screening
SBIR 第一阶段:开发具有超表面光学 (VISMO) 的振动光谱,用于无标记、高分辨率、高通量蛋白质筛选
- 批准号:
2233672 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Developing a safer electric bicycle through a pedal-by-wire drivetrain, balance assist, and artificial intelligence
SBIR 第一阶段:通过线控踏板传动系统、平衡辅助和人工智能开发更安全的电动自行车
- 批准号:
2335514 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: Developing a courseware platform that helps students develop self-regulated learning skills
SBIR第二阶段:开发课件平台,帮助学生培养自主学习技能
- 批准号:
2127314 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Developing a Continuous, Wireless, Intra-Oral Salivary pH Sensor
SBIR 第二阶段:开发连续、无线、口腔内唾液 pH 传感器
- 批准号:
2151368 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement