Measuring Quantum Dot Interactions Using Coherent Two-Dimensional Spectroscopy

使用相干二维光谱测量量子点相互作用

基本信息

项目摘要

Non-technical abstractSemiconductor quantum dots have discrete energy levels similar to those in an atom, thus they are often described as as "artificial atoms". Unlike atoms, the energy level structure of a quantum dot can be engineered, making them attractive for a wide range of applications ranging from highly efficient lasers to quantum information processing. In addition, quantum dots can be embedded in solid-state devices, a key feature for use in applications. When quantum dots are brought into proximity to one another, their interaction results in new states, just as the interaction between atoms results in the formation of molecules. This project will employ a new coherent optical method to observe and characterize the interactions between quantum dots with sufficient spatial resolution to isolate a single dot or a small set of interacting dots. This new optical method is inspired by established magnetic resonance tachniques that are used to determine molecular structure. Furthermore, the spectroscopic technique developed by this project will have broader applications. For example, it could be used to study excitation processes in photovoltaic solar cells. This project will combine research and education by training students in the multidisciplinary field of coherent optical spectroscopy of solid state systems. This training will include the basic science of the interaction of condensed matter systems with light as well as practical aspects of photonics and microfabrication.Technical AbstractSemiconductor quantum dots grown by molecular beam epitaxy have possible applications ranging from low-threshold laser diodes to implementing qubits in quantum information science. Epitaxially grown quantum dots have been studied extensively using single dot techniques, however single dot techniques are not as good at probing the coupling between quantum dots. Interactions can dramatically alter the optical and electronic properties of quantum dots. Furthermore, quantum information schemes require that there be controllable interactions between qubits, and hence between quantum dots. This project probes the coupling between quantum dots using a new implementation of optical multi-dimensional coherent spectroscopy based on photocurrent readout and applying it to small ensembles of InGaAs quantum dots. Two-dimensional coherent spectroscopy was originally developed in nuclear magnetic resonance. Over the last decade, there has been extensive progress in implementing two-dimensional spectroscopy in the infrared and optical regions of the spectrum. The principal investigator's group is a leader in developing methods for using it to study electronic transitions in semiconductors using near-infrared light. Recently these studies have included large ensembles of GaAs natural quantum dots and InAs self-assembled quantum dots. However, the methods used so far, based on detecting an optical signal produced by the third-order nonlinear response of the sample, are not appropriate for use on small ensembles of quantum emitters, which will not generate a well formed signal beam. Thus this project uses a new approach to two-dimensional spectroscopy that detects a fourth-order population through measurement of photocurrent. This approach will be applied to InAs quantum dots and quantum dot molecules embedded in a diode structure. The goal is to understand and measure the interactions between quantum dots to advance the fundamental understanding of quantum phenomena in these nanoscale systems. This understanding can improve the design of systems with target quantum mechanical states and dynamics.
半导体量子点具有类似于原子的离散能级,因此它们通常被描述为“人造原子”。与原子不同,量子点的能级结构可以被设计,这使得它们在从高效激光到量子信息处理的广泛应用中具有吸引力。此外,量子点可以嵌入固态设备中,这是应用中的一个关键特征。当量子点彼此靠近时,它们的相互作用会产生新的状态,就像原子之间的相互作用会导致分子的形成一样。该项目将采用一种新的相干光学方法来观察和表征量子点之间的相互作用,其空间分辨率足以隔离单个点或一小组相互作用的点。这种新的光学方法的灵感来自于用于确定分子结构的已建立的磁共振技术。此外,本项目开发的光谱技术将有更广泛的应用。例如,它可用于研究光伏太阳能电池中的激发过程。该项目将联合收割机的研究和教育相结合,培养学生在多学科领域的相干光学光谱的固态系统。该培训将包括凝聚态系统与光相互作用的基础科学以及光子学和微制造的实践方面。技术摘要通过分子束外延生长的半导体量子点的可能应用范围包括从低阈值激光二极管到实现量子位在量子信息科学中。外延生长的量子点已经使用单点技术进行了广泛的研究,然而单点技术在探测量子点之间的耦合方面没有那么好。相互作用可以极大地改变量子点的光学和电子特性。此外,量子信息方案要求量子比特之间存在可控的相互作用,因此量子点之间也存在可控的相互作用。该项目使用基于光电流读出的光学多维相干光谱的新实现来探测量子点之间的耦合,并将其应用于InGaAs量子点的小集合。二维相干光谱学最初是在核磁共振中发展起来的。在过去的十年中,在光谱的红外和光学区域中实现二维光谱学已经取得了广泛的进展。主要研究者小组是开发使用近红外光研究半导体电子跃迁方法的领导者。最近,这些研究包括GaAs天然量子点和InAs自组装量子点的大合奏。然而,迄今为止使用的基于检测由样品的三阶非线性响应产生的光学信号的方法不适合用于量子发射器的小集合,这将不会产生良好形成的信号光束。因此,该项目使用了一种新的二维光谱方法,通过测量光电流来检测四阶粒子数。这种方法将被应用到InAs量子点和量子点分子嵌入在二极管结构。目标是理解和测量量子点之间的相互作用,以推进对这些纳米级系统中量子现象的基本理解。这种理解可以改进具有目标量子力学状态和动力学的系统的设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Cundiff其他文献

Ultrafast Phenomena XIX
超快现象 XIX
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaoru Yamanouchi;Steven Cundiff;Regina de Vivie-Riedle;Makoto Kuwata-Gonokami and Louis Dimauro
  • 通讯作者:
    Makoto Kuwata-Gonokami and Louis Dimauro

Steven Cundiff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Cundiff', 18)}}的其他基金

Quantum Interference Control of Photoexcited Carriers for K-Space Microscopy
K 空间显微镜中光激发载流子的量子干涉控制
  • 批准号:
    2004286
  • 财政年份:
    2020
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Continuing Grant
PFI-TT: Development of a Software-Reconfigurable, Ultrafast Spectroscopic Microscope
PFI-TT:软件可重构、超快光谱显微镜的开发
  • 批准号:
    2016356
  • 财政年份:
    2020
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Standard Grant
Measuring Quantum Dot Interactions Using Coherent Two-Dimensional Spectroscopy
使用相干二维光谱测量量子点相互作用
  • 批准号:
    1415398
  • 财政年份:
    2014
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Continuing Grant
NER: Terahertz Detection of Electron Spin Precession
NER:电子自旋进动的太赫兹检测
  • 批准号:
    0209279
  • 财政年份:
    2002
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Standard Grant
Spin Electronics Novel Optical Probe of Carrier Spin Coherence in Semiconductors
自旋电子学半导体中载流子自旋相干性的新型光学探针
  • 批准号:
    0224154
  • 财政年份:
    2002
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Continuing Grant
Nonlinear Optical Spectroscopy of Mixed-Valent Materials
混合价材料的非线性光谱
  • 批准号:
    9973343
  • 财政年份:
    1999
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

QUIQ: Quantum information processed at attosecond timescale in double quantum-dot qubits
QUIQ:在双量子点量子位中以阿秒时间尺度处理的量子信息
  • 批准号:
    EP/Z000807/1
  • 财政年份:
    2025
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Fellowship
STTR Phase I: Innovating Micro-Light Emitting Diode (LED) Manufacturing with Novel Quantum Dot Micro-Patterning Technology
STTR 第一阶段:利用新型量子点微图案化技术创新微发光二极管 (LED) 制造
  • 批准号:
    2335283
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Standard Grant
Enhanced Quantum Dot Sources and Optical Atomic Memories for Telecommunication InterConnectivity
用于电信互连的增强型量子点源和光学原子存储器
  • 批准号:
    EP/Z000548/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Research Grant
High temperature spin selectivity in a quantum dot qubit
量子点量子位中的高温自旋选择性
  • 批准号:
    24K01289
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Novel INFIQ® Lead-Free Infrared Quantum Dot Inks for Photovoltaic Applications
适用于光伏应用的新型 INFIQ® 无铅红外量子点墨水
  • 批准号:
    10064218
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Collaborative R&D
Quantum dot emission from plasmonic nanocavities
等离子体纳米腔的量子点发射
  • 批准号:
    2885938
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Studentship
Collaborative Research: DMREF: Designing Coherence and Entanglement in Perovskite Quantum Dot Assemblies
合作研究:DMREF:设计钙钛矿量子点组件中的相干性和纠缠
  • 批准号:
    2324300
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Standard Grant
Quantum Dot synthesis in Continuous Flow via Self-Optimising Nanoscale Manufacturing Platforms
通过自优化纳米级制造平台在连续流中合成量子点
  • 批准号:
    2783323
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Studentship
Study on two-dimensional quantum dot arrays towards integration of spin qubits
面向自旋量子位集成的二维量子点阵列研究
  • 批准号:
    23K17764
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Chemical synthesis and exploration of concerted optical properties of anisotropic three-dimensional quantum dot superlattices
各向异性三维量子点超晶格的化学合成及协同光学性质探索
  • 批准号:
    23H01802
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了