Collaborative Research: Can Low-Angle Normal Faults Produce Earthquakes? Reading a Pseudotachylyte 'Rosetta Stone'
合作研究:低角度正断层能否产生地震?
基本信息
- 批准号:1629734
- 负责人:
- 金额:$ 9.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The physics of earthquake-producing fault rupture has been studied for over a hundred years, a period marked by dramatic advances in the instrumentation and analytical techniques required to understand both the ground shaking (seismicity) caused by fault failure and the physical properties of fault rocks. This research addresses a discrepancy between the long-term rock record of ancient earthquakes and the short-term historical seismic record. Specifically, it focuses on representatives of a class of faults that appear to be poorly oriented for breakage according to the current earthquake mechanics paradigm and Andersonian mechanical theory for the rupture of rocks. According to established theory, normal faults that form at low angles (i.e., less than 30 degrees) should not produce significant earthquakes because the tectonic forces that cause failure are oriented at a high angle to the fault surface. The historical seismicity record generally supports this argument, suggesting that such faults produce only microearthquakes. However, the geologic record contains numerous examples of normal faults that appeared to have slipped at low (less than 30 degree) dips. The presence of pseudotachylite, an extremely quickly cooled, glassy melt rock that generally forms as the result of frictional heating during seismic slip, has been found to be associated with some of these low angle faults, and thus preserves a record of 'fossil earthquakes.' In this study, the principal investigators have identified an unusually rich record of 'fossil earthquakes' on a low angle normal fault in the South Mountains, Arizona. This research is exploring this fossil record with the goal of determining whether or not such faults produce significant earthquakes in non-Andersonian orientations, thus addressing a first-order question in fault mechanics. The research will not only result in a deeper understanding of the earthquake record and the potential seismic hazard of 'misoriented' faults, but also has the potential to transform our understanding of fault mechanics. In addition to the scientific objectives of this research, the project will contribute to the training of graduate and undergraduate students in a STEM (science, technology, engineering, and mathematics) discipline, thus contributing to a more scientifically literate and vibrant society. It represents a collaborative effort between investigators from two research-intensive public universities. Research results will be disseminated by presentation at national geoscience meetings and through the peer-reviewed scientific literature. The results will also be used to engage and educate the public regarding geologic concepts and earthquake hazards through a partnership with the University of Wisconsin Geology Museum to produce participatory exercises and videos and online teaching modules. Low-angle normal faults (LANFs) are poorly oriented for slip according to Andersonian fault mechanics. The geologic record generally supports slip at current low (less than 30 degrees) dips; however, the seismic record generally suggests such faults cannot produce earthquakes greater than magnitude 5.5. One explanation for the discrepancy between these data sets is that the large size and greater efficiency of LANFs result in recurrence intervals longer than the seismic record. A second is that LANFs were re-oriented by isostatic rebound as they were exhumed, allowing them to slip at steeper dips before rotating into their final, shallow orientations. A third explanation, one which reconciles the geologic and geophysical records, is that low angle normal faults fail by creep, producing microseismicity but not substantial earthquakes. Although a convincing explanation for the two active faults that demonstrably record creep, this does not account for the common occurrence of pseudotachylyte in exhumed low-angle normal fault zones worldwide. The purpose of the proposed research is to explore this fossil record of earthquakes using exposures from the South Mountains metamorphic core complex. This site was chosen because pseudotachylyte fault veins are plentiful and amenable to both rock magnetic and geochronologic analyses. This project will test the following hypotheses by integrated structural, thermochronologic, and paleomagnetic analyses and modeling: (1) Recurrence intervals of the largest earthquakes are sufficiently long that they can be distinguished within the error of 40Argon/39Argon isotopic ages (+/- ca. 0.25 million years). (2) Paleomagnetic remanence indicates that earthquakes occurred at current fault dips (less than 30 degrees). (3) Fault veins in the South Mountains record a range of earthquake sizes, the largest of which are greater than magnitude 5.5. The principal investigators will use the magnetic record preserved in pseudotachylyte to quantify fault rotation (tilting), if any, seismogenesis. The remanence vector recorded by each sample will be compared with the expected geomagnetic field direction by correlating the sample?s 40Argon/39Argon age with its concomitant geomagnetic north location and comparison with the North American apparent polar wander path. Any divergence between the two vectors will represent rotation of the system since seismic slip, ultimately allowing us to quantify the angle at which a LANF was active. The cooling history of the wall rock also will be determined using several thermochronometers. Modeling will incorporate these data and constrain earthquake magnitude based on pseudotachylyte fault vein thickness. The project addresses a first-order question in fault mechanics and will provide a deeper understanding of the record of ancient seismicity in the metamorphic core complexes of the western U.S.
产生地震的断层破裂的物理学已经研究了一百多年,这一时期的标志是仪器和分析技术的巨大进步,这些技术需要了解断层破裂引起的地面震动(地震活动性)和断层岩石的物理性质。本研究解决了古代地震的长期岩石记录与短期历史地震记录之间的差异。具体来说,它侧重于一类断层的代表,根据当前的地震力学范式和安德森岩石破裂力学理论,这些断层似乎不适合断裂。根据现有的理论,形成于低角度(即小于30度)的正断层不应该产生重大地震,因为导致断裂的构造力与断层表面的角度很大。历史上的地震活动记录一般支持这一论点,表明这样的断层只产生微地震。然而,地质记录中包含了许多正常断层的例子,这些断层似乎在低倾角(小于30度)下滑动。伪水晶石的存在,是一种极快冷却的玻璃状熔融岩石,通常是地震滑动期间摩擦加热的结果,已被发现与一些低角度断层有关,因此保存了“化石地震”的记录。在这项研究中,主要研究人员在亚利桑那州南山的一个低角度正断层上发现了异常丰富的“化石地震”记录。这项研究正在探索这些化石记录,目的是确定这些断层是否会在非安德森方向产生重大地震,从而解决断层力学中的一级问题。这项研究不仅将加深对地震记录和“定向错误”断层潜在地震危险性的认识,而且有可能改变我们对断层力学的认识。除了本研究的科学目标外,该项目还将有助于培养STEM(科学、技术、工程和数学)学科的研究生和本科生,从而为一个更具科学素养和活力的社会做出贡献。它代表了来自两所研究型公立大学的研究人员之间的合作努力。研究成果将在国家地球科学会议上发表,并通过同行评议的科学文献传播。通过与威斯康星大学地质博物馆合作,制作参与式练习、视频和在线教学模块,研究结果还将用于参与和教育公众关于地质概念和地震危害的知识。根据安徒生断层力学,低角度正断层(LANFs)的滑移取向较差。地质记录通常支持当前低倾角(小于30度)的滑动;然而,地震记录通常表明,这样的断层不会产生超过5.5级的地震。这些数据集之间存在差异的一种解释是,lanf的大尺寸和更高的效率导致其重复间隔比地震记录更长。第二种解释是,当它们被挖掘出来时,由于均衡反弹而重新定向,这使得它们在旋转到最终的浅方向之前,可以在更陡的地方滑动。第三种解释调和了地质和地球物理记录,即低角度正断层因蠕变而失效,产生微震活动,但不会产生大地震。虽然这是对两条明显记录蠕变的活动断层的一个令人信服的解释,但这并不能解释在世界范围内已发掘的低角度正断层带中普遍出现伪岩的原因。这项研究的目的是利用南山变质核杂岩的暴露来探索地震的化石记录。之所以选择这个地点,是因为伪岩断层脉丰富,适合岩石磁分析和地质年代学分析。本项目将通过综合构造、热年代学和古地磁分析和建模来验证以下假设:(1)最大地震的重复周期足够长,可以在40Argon/39Argon同位素年龄(+/-约25万年)的误差范围内进行区分。(2)古地磁残余表明地震发生在现今断层倾角(小于30度)。(3)南山断脉记录了一系列地震震级,最大的地震震级超过5.5级。主要研究人员将使用保存在伪岩中的磁记录来量化断层旋转(倾斜),如果有的话,地震成因。将每个样品记录的剩磁矢量与期望的地磁场方向进行对比。s 40Argon/39Argon年龄及其伴随的地磁北位以及与北美视极移路径的比较。两个矢量之间的任何分歧将表示系统自地震滑动以来的旋转,最终使我们能够量化LANF活跃的角度。围岩的冷却历史也将用几个温度计来确定。建模将纳入这些数据,并根据伪岩断层脉厚度约束地震震级。该项目解决了断层力学中的一个一级问题,并将对美国西部变质核杂岩的古代地震活动性记录提供更深入的了解
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Feinberg其他文献
Intrinsic long-range degree correlations in complex networks
复杂网络中内在的长程度相关性
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Ken Mochizuki;Naomichi Hatano;Joshua Feinberg;Hideaki Obuse;藤木 結香. 矢久保考介 - 通讯作者:
藤木 結香. 矢久保考介
乱れのある一次元非エルミート模型における統計的性質
无序一维非厄米模型的统计特性
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
望月健;羽田野直道;Joshua Feinberg;小布施秀明 - 通讯作者:
小布施秀明
離散 de Rham 系列を満たす多面体要素を用いた不完全 BDD 法の静磁場問題への適用
不完全BDD方法在满足离散de Rham级数的多面体单元静磁场问题中的应用
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ken Mochizuki;Naomichi Hatano;Joshua Feinberg;and Hideaki Obuse;田上 大助 - 通讯作者:
田上 大助
Scaling and universality of the complexity of analog computation.
模拟计算复杂性的扩展和普遍性。
- DOI:
10.1063/1.2194471 - 发表时间:
2005 - 期刊:
- 影响因子:2.9
- 作者:
Yaniv S. Avizrats;Joshua Feinberg;Shmuel Fishman - 通讯作者:
Shmuel Fishman
Statistical Properties of the Non-Hermitian SSH Model and Symmetry Inheritance owing to Real Spectra
非埃尔米特 SSH 模型的统计特性和实谱的对称性继承
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ken Mochizuki;Naomichi Hatano;Joshua Feinberg;and Hideaki Obuse - 通讯作者:
and Hideaki Obuse
Joshua Feinberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Feinberg', 18)}}的其他基金
Collaborative Research: Calibrating the Pace of Paleotropical Environmental and Ecological Change During Earth’s Previous Icehouse
合作研究:校准地球以前的冰库期间古热带环境和生态变化的步伐
- 批准号:
2221050 - 财政年份:2022
- 资助金额:
$ 9.01万 - 项目类别:
Standard Grant
Collaborative Proposal: Facility: Magnetics Information Consortium Catalyzes Enhanced Cyberinfrastructure and FAIR Data Access Enabling Science Across Community Subdomains
合作提案:设施:磁学信息联盟促进增强的网络基础设施和公平数据访问,实现跨社区子域的科学
- 批准号:
2148616 - 财政年份:2022
- 资助金额:
$ 9.01万 - 项目类别:
Continuing Grant
Collaborative Research: High temporal resolution paleomagnetism of speleothems
合作研究:洞穴生物的高时间分辨率古地磁学
- 批准号:
2044535 - 财政年份:2021
- 资助金额:
$ 9.01万 - 项目类别:
Standard Grant
Collaborative Research: Anatomy of a Greenhouse World: The Early Eocene of the Green River Basin, Wyoming
合作研究:温室世界的解剖:怀俄明州格林河流域的始新世早期
- 批准号:
1813508 - 财政年份:2018
- 资助金额:
$ 9.01万 - 项目类别:
Standard Grant
Improving Absolute Paleointensity Experiments through Pressure Cycling
通过压力循环改进绝对古强度实验
- 批准号:
1620582 - 财政年份:2016
- 资助金额:
$ 9.01万 - 项目类别:
Continuing Grant
Collaborative Research: Student & Early Career Scientist Travel Support for the 2015 First Order Reversal Curve (FORC) Magnetism Workshop
合作研究:学生
- 批准号:
1542002 - 财政年份:2015
- 资助金额:
$ 9.01万 - 项目类别:
Standard Grant
Collaborative Research: Identification of magnetic sources in the upper mantle
合作研究:识别上地幔磁源
- 批准号:
1345071 - 财政年份:2014
- 资助金额:
$ 9.01万 - 项目类别:
Standard Grant
Collaborative Research: Paleomagnetic Analysis of Speleothems and High Precision Dating of Geomagnetic Records
合作研究:洞穴古地磁分析和地磁记录高精度测年
- 批准号:
1316385 - 财政年份:2013
- 资助金额:
$ 9.01万 - 项目类别:
Continuing Grant
EAGER: Collaborative Research: Can Low-Angle Normal Faults Produce Earthquakes? A Paleoseismic Perspective
EAGER:合作研究:低角度正断层能否产生地震?
- 批准号:
1236954 - 财政年份:2012
- 资助金额:
$ 9.01万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Paleomagnetic and Rock Magnetic Investigation of IODP Expedition 318 Site U1357 Sediments
RAPID:合作研究:IODP 探险队 318 站点 U1357 沉积物的古地磁和岩石磁学调查
- 批准号:
1057429 - 财政年份:2010
- 资助金额:
$ 9.01万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 9.01万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
$ 9.01万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Star-Planet Interactions Around Low-mass Stars
合作研究:RUI:低质量恒星周围的恒星-行星相互作用
- 批准号:
2310589 - 财政年份:2023
- 资助金额:
$ 9.01万 - 项目类别:
Standard Grant
Collaborative Research: Development of a Nanofabrication Lab Manual Featuring a Suite of Low-Cost Experiments to Enable Hands-On Training at Community and Technical Colleges
合作研究:开发纳米制造实验室手册,其中包含一套低成本实验,可在社区和技术学院进行实践培训
- 批准号:
2301138 - 财政年份:2023
- 资助金额:
$ 9.01万 - 项目类别:
Standard Grant
Collaborative Research: Development of a Nanofabrication Lab Manual Featuring a Suite of Low-Cost Experiments to Enable Hands-On Training at Community and Technical Colleges
合作研究:开发纳米制造实验室手册,其中包含一套低成本实验,可在社区和技术学院进行实践培训
- 批准号:
2301139 - 财政年份:2023
- 资助金额:
$ 9.01万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 9.01万 - 项目类别:
Standard Grant
Collaborative Research: Development of a Nanofabrication Lab Manual Featuring a Suite of Low-Cost Experiments to Enable Hands-On Training at Community and Technical Colleges
合作研究:开发纳米制造实验室手册,其中包含一套低成本实验,可在社区和技术学院进行实践培训
- 批准号:
2301137 - 财政年份:2023
- 资助金额:
$ 9.01万 - 项目类别:
Standard Grant
Collaborative Research: Development of a Nanofabrication Lab Manual Featuring a Suite of Low-Cost Experiments to Enable Hands-On Training at Community and Technical Colleges
合作研究:开发纳米制造实验室手册,其中包含一套低成本实验,可在社区和技术学院进行实践培训
- 批准号:
2301140 - 财政年份:2023
- 资助金额:
$ 9.01万 - 项目类别:
Standard Grant
Collaborative Research: An Effective and Efficient Low-Cost Alternate to Cell Aware Test Generation for Cell Internal Defects
协作研究:针对电池内部缺陷的电池感知测试生成有效且高效的低成本替代方案
- 批准号:
2331003 - 财政年份:2023
- 资助金额:
$ 9.01万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Thermal Co-Design for Heterogeneous Integration of Low Loss Electromagnetic and RF Systems (The CHILLERS)
合作研究:FuSe:低损耗电磁和射频系统异构集成的热协同设计(CHILLERS)
- 批准号:
2329206 - 财政年份:2023
- 资助金额:
$ 9.01万 - 项目类别:
Continuing Grant