Using Computational Geometry to Solve Hard Mathematical Optimization Problems

使用计算几何解决困难的数学优化问题

基本信息

  • 批准号:
    1634193
  • 负责人:
  • 金额:
    $ 29.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

The purpose of this project is to use algorithms from computational geometry to solve problems in mathematical optimization and to apply concepts from optimization to solve problems in computational geometry. Although the fields of geometry and optimization have enjoyed a long history of cross-pollination, this project will specifically focus on infinite-dimensional optimization, which has not historically benefited from geometric analysis. The research problems that are the focus of this study can be applied to a variety of problems across many domains, such as geospatial analysis, transportation theory, ecological conservation, mechanism design, and political science. This project includes an extensive outreach program that leverages existing relationships with industry, government, and underrepresented groups as a basis for hands-on activities with students at the high school, undergraduate, and graduate levels. By involving these collaborators, this project will allow students to understand the concerns of practitioners in addition to those of academics, thus ensuring that our work will have both an intellectual and social benefit.The key theme of this research is the use of knowledge in one field, namely computational geometry or infinite-dimensional optimization, to solve a problem in the other. For example, an infinite-dimensional optimization problem might have an infinite-dimensional variable space, an infinite-dimensional constraint space, or both. When one of these spaces has an appropriate geometric structure associated with it, we have shown that it is sometimes possible to reduce an infinite-dimensional set to one that is finite; one might use convexity or monotonicity properties of the Euclidean distance function to identify a finite set of "bottleneck points" that are sufficient for feasibility of the entire problem, thereby reducing its complexity. As a second example, many problems in computational geometry are concerned with the construction of "equitable" shapes, meaning shapes that have (for example) equal area, mass, perimeter, or volume. We have identified problem attributes in which certain "equity" constraints are actually equivalent to the optimality conditions of a convex optimization problem, which again reduces the complexity of the original problem. The problems and methods introduced in this research are therefore representative of a new set of tools that complement the arsenal of modern operations researchers and computational geometers, synthesizing elements from both fields.
这个项目的目的是使用计算几何中的算法来解决数学优化中的问题,并应用优化中的概念来解决计算几何中的问题。虽然几何和优化领域有着悠久的异花授粉历史,但这个项目将专门关注历史上没有从几何分析中受益的无限维优化。作为本研究重点的研究问题,可以应用于地理空间分析、交通运输理论、生态保护、机制设计、政治学等多个领域的各种问题。该项目包括一个广泛的外展计划,利用与行业、政府和代表性不足群体的现有关系,作为与高中、本科生和研究生级别的学生实践活动的基础。通过让这些合作者参与,这个项目将允许学生了解实践者和学术界的关切,从而确保我们的工作将具有智力和社会效益。本研究的关键主题是使用一个领域的知识,即计算几何或无限维优化,来解决另一个领域的问题。例如,无限维优化问题可能有无限维变量空间、无限维约束空间,或者两者都有。当这些空间中的一个具有与之相关的适当的几何结构时,我们已经证明了有时可以将无限维集归结为有限的集;人们可以利用欧几里德距离函数的凸性或单调性来识别足以满足整个问题的可行性的有限的“瓶颈点”集,从而降低其复杂性。作为第二个例子,计算几何中的许多问题都涉及到“均匀”形状的构造,即具有(例如)相等的面积、质量、周长或体积的形状。我们已经确定了问题属性,其中某些“公平”约束实际上等价于凸优化问题的最优性条件,这再次降低了原始问题的复杂性。因此,这项研究中介绍的问题和方法代表了一套新的工具,这些工具补充了现代运筹学研究人员和计算几何学家的武器库,综合了这两个领域的元素。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distributions with Maximum Spread Subject to Wasserstein Distance Constraints
受 Wasserstein 距离约束的最大散布分布
Wasserstein Distance and the Distributionally Robust TSP
  • DOI:
    10.1287/opre.2018.1746
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Carlsson, John Gunnar;Behroozi, Mehdi;Mihic, Kresimir
  • 通讯作者:
    Mihic, Kresimir
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Carlsson其他文献

Computing the alpha complex using dual active set quadratic programming
  • DOI:
    10.1038/s41598-024-63971-3
  • 发表时间:
    2024-08-27
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Erik Carlsson;John Carlsson
  • 通讯作者:
    John Carlsson

John Carlsson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Computational Tropical Geometry and its Applications
计算热带几何及其应用
  • 批准号:
    MR/Y003888/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.08万
  • 项目类别:
    Fellowship
Computational topology and geometry for systems biology
系统生物学的计算拓扑和几何
  • 批准号:
    EP/Z531224/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.08万
  • 项目类别:
    Research Grant
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
  • 批准号:
    23K12949
  • 财政年份:
    2023
  • 资助金额:
    $ 29.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
FET: Small: A triangle of quantum mathematics, computational complexity, and geometry
FET:小:量子数学、计算复杂性和几何的三角关系
  • 批准号:
    2317280
  • 财政年份:
    2023
  • 资助金额:
    $ 29.08万
  • 项目类别:
    Standard Grant
Travel: Student Travel Grant for 2023 Computational Geometry Week
旅行:2023 年计算几何周学生旅行补助金
  • 批准号:
    2321292
  • 财政年份:
    2023
  • 资助金额:
    $ 29.08万
  • 项目类别:
    Standard Grant
Combinatorial, Computational, and Applied Algebraic Geometry, Seattle 2022
组合、计算和应用代数几何,西雅图 2022
  • 批准号:
    2142724
  • 财政年份:
    2022
  • 资助金额:
    $ 29.08万
  • 项目类别:
    Standard Grant
Group actions and symplectic techniques in Machine Learning and Computational Geometry
机器学习和计算几何中的群作用和辛技术
  • 批准号:
    RGPIN-2017-06901
  • 财政年份:
    2022
  • 资助金额:
    $ 29.08万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Information Geometry/Neuroinformatics
计算信息几何/神经信息学
  • 批准号:
    RGPIN-2020-04015
  • 财政年份:
    2022
  • 资助金额:
    $ 29.08万
  • 项目类别:
    Discovery Grants Program - Individual
Bringing upper and lower bounds closer in computational geometry
使计算几何中的上限和下限更加接近
  • 批准号:
    567959-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 29.08万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Visibility in Computational Geometry
计算几何中的可见性
  • 批准号:
    574590-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 29.08万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了