Upper Ocean Turbulence in Non-Equilibrium Conditions
非平衡条件下的上层海洋湍流
基本信息
- 批准号:1634578
- 负责人:
- 金额:$ 31.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Turbulent processes near the surface of the ocean play a key role in weather and climate systems by coupling the ocean with the atmosphere and by distributing nutrients, pollutants, plankton, and bubbles. Wind and waves drive this turbulence, often through complex interactions. Our current conceptual and theoretical framework of these dynamics is based on an equilibrium assumption, in which waves and turbulence are in equilibrium with the wind forcing. However, recent investigations highlight that typical ocean conditions are rarely in equilibrium, but rather are characterized by swell and variable wind waves in terms of frequencies and directions. This study will integrate recent observational, theoretical, and computational progress to systematically assess the influence of non-equilibrium conditions on turbulence near the ocean surface and on the exchange of momentum and heat with the atmosphere. Improving the representation of air-sea interaction and ocean turbulence, will advance coupled ocean-atmosphere models of weather and climate. The ability to predict the distribution of ocean pollutants as well as seasonal fluctuations and secular climate change has important environmental, societal, and economical impacts. The knowledge developed in this study will be incorporated into courses at the University of Delaware. The project will uniquely foster training of students in a collaborative environment with computational and observational experts in oceanography. The PI will participate in public outreach events, such as the annual Coast Day, an open house day for the general public sponsored by the University of Delaware's College of Earth, Ocean and Environment. This occasion provides an opportunity for scientists to inform the general public of the scientific issues that influence the environment and to expose children of all ages to careers in the sciences and engineering.By critically evaluating traditional equilibrium assumptions, the proposed research promises to advance our basic conceptual understanding of ocean surface boundary layer (OSBL) dynamics. Specifically, the study will test the following hypotheses: (1) The evolution of the OSBL depends on complex, non-equilibrium sea states, so that for the same surface fluxes OSBL dynamics vary significantly. (2) A turbulence-resolving model based on the wave-averaged Navier-Stokes equations accurately captures the observed sea state dependent evolution of the turbulent OSBL. (3) The relative importance of breaking wave and Langmuir circulation (LC) effects depends on sea state and OSBL conditions, such as OSBL depth. (4) Extending the existing theoretical and conceptual framework of planetary boundary layers by including wave effects explicitly will provide a more physical description of realistic OSBLs. These hypotheses will be addressed by analyzing observations from recent field experiments in the coastal and open ocean in collaboration with the Woods Hole Oceanographic Institution. Those rare data sets include collocated measurements of waves, surface fluxes, and upper ocean structure, including unique observations of LC characteristics. Observations will be compared to large-eddy simulation (LES) results based on the wave-averaged Navier-Stokes equations. The LES model resolves turbulence and captures both LC and breaking waves. The breaking wave input to the model will be enhanced based on recent progress on wind-wave coupling theory that takes sea state effects into account in collaboration with the National Center for Atmospheric Research. In collaboration with the Leibniz Institute for Baltic Sea Research, the researchers will evaluate common OSBL turbulence models employed in regional and global ocean models. The combined analyses of OSBL observations and process-based LES will provide the needed insights for developing novel, accurate physics-based OSBL models. Thus, the research will contribute to improving the next-generation ocean models and to enhancing our understanding of the coupled ocean-atmosphere system.
海洋表面附近的湍流过程通过将海洋与大气耦合以及通过分布营养物、污染物、浮游生物和气泡在天气和气候系统中发挥关键作用。风和波浪通常通过复杂的相互作用驱动这种湍流。我们目前的概念和理论框架,这些动力学是基于一个平衡的假设,其中波浪和湍流是在平衡的风强迫。然而,最近的调查突出表明,典型的海洋条件很少处于平衡状态,而是以膨胀和频率和方向可变的风浪为特征。这项研究将综合最近的观测、理论和计算进展,系统地评估非平衡条件对海洋表面附近湍流以及与大气的动量和热量交换的影响。改进海气相互作用和海洋湍流的表现,将促进天气和气候的海气耦合模式。预测海洋污染物分布以及季节波动和长期气候变化的能力具有重要的环境,社会和经济影响。在这项研究中开发的知识将被纳入特拉华州大学的课程。该项目将独特地促进学生在与海洋学计算和观察专家的协作环境中接受培训。PI将参加公共外联活动,如一年一度的海岸日,这是由特拉华州大学地球、海洋和环境学院主办的公众开放日。这个机会为科学家提供了一个机会,让公众了解影响环境的科学问题,并让所有年龄段的儿童接触到科学和工程领域的职业生涯。通过批判性地评估传统的平衡假设,拟议的研究有望推进我们对海洋表面边界层(OSBL)动力学的基本概念理解。具体而言,本研究将检验以下假设:(1)OSBL的演变取决于复杂的,非平衡的海况,因此,对于相同的表面通量OSBL动态变化显着。(2)基于波浪平均Navier-Stokes方程的湍流分辨模型准确地捕获了所观察到的湍流OSBL的海况依赖性演化。(3)破碎波和朗缪尔环流(LC)效应的相对重要性取决于海况和OSBL条件,例如OSBL深度。(4)扩展现有的行星边界层的理论和概念框架,包括波效应明确将提供一个更现实的OSBL物理描述。这些假设将通过与伍兹霍尔海洋研究所合作,分析最近在沿海和公海进行的实地实验的观测结果来解决。这些罕见的数据集包括波浪、表面通量和上层海洋结构的同位测量,包括LC特征的独特观测。观测结果将与基于波浪平均Navier-Stokes方程的大涡模拟(LES)结果进行比较。LES模型解决湍流并捕获LC和破碎波。将根据风浪耦合理论的最新进展,与国家大气研究中心合作,考虑到海况影响,加强模型的破波输入。研究人员将与莱布尼茨波罗的海研究所合作,评估区域和全球海洋模型中使用的常见OSBL湍流模型。OSBL观测和基于过程的LES的组合分析将为开发新的,准确的基于物理的OSBL模型提供所需的见解。因此,该研究将有助于改进下一代海洋模式,并提高我们对海洋-大气耦合系统的理解。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wind–Wave Misalignment Effects on Langmuir Turbulence in Tropical Cyclone Conditions
- DOI:10.1175/jpo-d-19-0093.1
- 发表时间:2019-12
- 期刊:
- 影响因子:3.5
- 作者:Dong Wang;T. Kukulka;B. Reichl;T. Hara;I. Ginis
- 通讯作者:Dong Wang;T. Kukulka;B. Reichl;T. Hara;I. Ginis
Ocean Surface Boundary Layer Response to Abruptly Turning Winds
海洋表面边界层对突然转向的风的响应
- DOI:10.1175/jpo-d-20-0198.1
- 发表时间:2021
- 期刊:
- 影响因子:3.5
- 作者:Wang, Xingchi;Kukulka, Tobias
- 通讯作者:Kukulka, Tobias
Wind Fetch and Direction Effects on Langmuir Turbulence in a Coastal Ocean
沿海海洋朗缪尔湍流的取风和方向效应
- DOI:10.1029/2021jc018222
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wang, Xingchi;Kukulka, Tobias;Plueddemann, Albert J.
- 通讯作者:Plueddemann, Albert J.
Interaction of Langmuir Turbulence and Inertial Currents in the Ocean Surface Boundary Layer under Tropical Cyclones
- DOI:10.1175/jpo-d-17-0258.1
- 发表时间:2018-09
- 期刊:
- 影响因子:3.5
- 作者:Dong Wang;T. Kukulka;B. Reichl;T. Hara;I. Ginis;P. Sullivan
- 通讯作者:Dong Wang;T. Kukulka;B. Reichl;T. Hara;I. Ginis;P. Sullivan
Wind- and Wave-Driven Reynolds Stress and Velocity Shear in the Upper Ocean for Idealized Misaligned Wind-Wave Conditions
上层海洋中风和波浪驱动的雷诺应力和速度切变,用于理想化的错位风浪条件
- DOI:10.1175/jpo-d-20-0157.1
- 发表时间:2021
- 期刊:
- 影响因子:3.5
- 作者:Wang, Dong;Kukulka, Tobias
- 通讯作者:Kukulka, Tobias
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tobias Kukulka其他文献
Zooplankton-microplastic exposure in Delaware coastal waters: Atlantic blue crab (Callinectes sapidus) larvae case study.
特拉华州沿海水域的浮游动物微塑料暴露:大西洋蓝蟹(Callinectes sapidus)幼虫案例研究。
- DOI:
10.1016/j.marpolbul.2023.115541 - 发表时间:
2023 - 期刊:
- 影响因子:5.8
- 作者:
Todd X. Thoman;Tobias Kukulka;Jonathan H. Cohen;Hayden Boettcher - 通讯作者:
Hayden Boettcher
Zooplankton-microplastic exposure in Delaware coastal waters: Atlantic blue crab (emCallinectes sapidus/em) larvae case study
特拉华沿海水域浮游动物-微塑料暴露:大西洋蓝蟹(Callinectes sapidus)幼虫案例研究
- DOI:
10.1016/j.marpolbul.2023.115541 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:4.900
- 作者:
Todd X. Thoman;Tobias Kukulka;Jonathan H. Cohen;Hayden Boettcher - 通讯作者:
Hayden Boettcher
Tobias Kukulka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tobias Kukulka', 18)}}的其他基金
Collaborative Research: Lagrangian transport and patchiness of buoyant material in estuarine systems
合作研究:河口系统中浮力物质的拉格朗日输送和斑块性
- 批准号:
2148370 - 财政年份:2022
- 资助金额:
$ 31.43万 - 项目类别:
Standard Grant
Conference: The Middle Atlantic Bight Physical Oceanography and Meteorology (MABPOM) Meeting 2022
会议:2022 年大西洋中湾物理海洋学和气象学 (MABPOM) 会议
- 批准号:
2245843 - 财政年份:2022
- 资助金额:
$ 31.43万 - 项目类别:
Standard Grant
Collaborative Research: The Heated Wind- and Wave-Driven Ocean Surface Boundary Layer: Synergistic Analyses of Observations and Simulations
合作研究:受热的风和波浪驱动的海洋表面边界层:观测和模拟的协同分析
- 批准号:
2219825 - 财政年份:2022
- 资助金额:
$ 31.43万 - 项目类别:
Standard Grant
CAREER: Lagrangian investigation of upper ocean turbulence
职业:上层海洋湍流的拉格朗日研究
- 批准号:
1352422 - 财政年份:2014
- 资助金额:
$ 31.43万 - 项目类别:
Continuing Grant
Collaborative Research: Langmuir Turbulence Under Tropical Cyclones
合作研究:热带气旋下的朗缪尔湍流
- 批准号:
1130678 - 财政年份:2011
- 资助金额:
$ 31.43万 - 项目类别:
Standard Grant
相似国自然基金
相似海外基金
Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
- 批准号:
2344156 - 财政年份:2024
- 资助金额:
$ 31.43万 - 项目类别:
Standard Grant
Collaborative Research: Quantifying the effects of Langmuir Turbulence on Sea Ice and The Arctic Ocean
合作研究:量化朗缪尔湍流对海冰和北冰洋的影响
- 批准号:
2146889 - 财政年份:2022
- 资助金额:
$ 31.43万 - 项目类别:
Standard Grant
Development and Validation of an In-Situ Particle Tracking Velocimetry System for Ocean Turbulence Measurement
用于海洋湍流测量的原位粒子跟踪测速系统的开发和验证
- 批准号:
2219857 - 财政年份:2022
- 资助金额:
$ 31.43万 - 项目类别:
Standard Grant
Collaborative Research: Quantifying the Effects of Langmuir Turbulence on Sea Ice and the Arctic Ocean
合作研究:量化朗缪尔湍流对海冰和北冰洋的影响
- 批准号:
2146910 - 财政年份:2022
- 资助金额:
$ 31.43万 - 项目类别:
Standard Grant
NSFGEO-NERC Scattering of ocean surface gravity waves by submesoscale turbulence
NSFGEO-NERC 亚尺度湍流对海洋表面重力波的散射
- 批准号:
NE/W002876/1 - 财政年份:2022
- 资助金额:
$ 31.43万 - 项目类别:
Research Grant
Developing spectral numerical models for ocean turbulence using a distorting coordinate system
使用扭曲坐标系开发海洋湍流的光谱数值模型
- 批准号:
20K14556 - 财政年份:2022
- 资助金额:
$ 31.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
NSFGEO-NERC: Scattering of ocean surface gravity waves by submesoscale turbulence
NSFGEO-NERC:次中尺度湍流对海洋表面重力波的散射
- 批准号:
2048583 - 财政年份:2021
- 资助金额:
$ 31.43万 - 项目类别:
Standard Grant
Enabling the autonomous observation of Arctic Ocean turbulence and mixing
实现北冰洋湍流和混合的自主观测
- 批准号:
544992-2020 - 财政年份:2020
- 资助金额:
$ 31.43万 - 项目类别:
Discovery Grants Program - Ship Time
Development of novel met-ocean analytical techniques to characterise turbulence.
开发新颖的气象海洋分析技术来表征湍流。
- 批准号:
2274786 - 财政年份:2019
- 资助金额:
$ 31.43万 - 项目类别:
Studentship
Submesoscale Ocean Fronts and Turbulence (SOFT) observatory
次尺度海洋锋和湍流 (SOFT) 天文台
- 批准号:
418247-2012 - 财政年份:2017
- 资助金额:
$ 31.43万 - 项目类别:
Discovery Grants Program - Individual